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Abstract

Abstract

Data journalism has become a pervasive feature of mass media, with 
infographics and visualizations appearing online, in television coverage, and 
in print. While visualizations in mass media can render data accessible to the 
public, they can also give users a false sense of truth and certainty. Uncertainty, 
in the form of incomplete or imperfect data, exists in all information and 
visualizations; it can be introduced during collection, analysis, or even during 
the design process, but it is often left out of final information visualizations. 
Conveying the uncertainty involved in a data set provides users with a fuller 
picture and a more in-depth understanding of an issue.

Currently, there is not a robust, experiential visual language for conveying 
that uncertainty. While there are methods for visualizing uncertainty in 
scientific or statistical figures, these graphics are typically created for audiences 
familiar with the visual language of scientific data, making them inaccessible 
to non-expert audiences. This gap provides an opportunity for design methods 
and research to develop techniques for non-expert audiences. Drawing from 
design methods and frameworks, particularly explorations of visual form,  
in addition to statistical and scientific methods for conveying uncertainty, 
this investigation examines experiential techniques that data journalists can 
use to convey uncertainty in statistical and scientific information to a non-
expert audience. 



Visualizing 
Uncertainty
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Introduction

Mass media has embraced data journalism as the future of storytelling. The 
New York Times includes an entire section dedicated to visualizations, and 
Nate Silver’s FiveThirtyEight attracts users with articles and visualizations 
based heavily in data storytelling. Infographics and visualizations appear 
online, in television coverage, and in print. In rendering data accessible to the 
public, visualizations often give users a false sense of truth and certainty. All 
information contains some form of uncertainty, or moments of incomplete 
or imperfect information. Any interaction or manipulation of data, be that 
collection or analysis, can introduce uncertainty, but it is often left out of 
final information visualizations. The creators of graphics can provide a fuller 
picture of information by conveying the uncertainty involved in their formation. 

During the 2016 presidential election, The New York Times’ election 
coverage incorporated two moving “needle” gauges to convey the uncertainty 
in their election forecasts (Figure 1). The needle, as The Times (Wartik, 
2017) has taken to calling it, was an object of both “obsession and derision,” 
sparking social media hashtags and a host of memes (Figure 2). The reaction 
to, and evolution of, the needle points to a desire among users and designers 
for more complete visualizations, ones that can convey moments of doubt 
alongside confidence.

Figure 2: Twitter 

Responses  (Opposite) 

Responses to The New York 

Times’ Election Needle on 

Twitter. 

Figure 1: “The Needle” 

(Below) The New York 

Times’ needle interface for 

election results.



10

Visualizing 
Uncertainty

The needle, and information visualizations in general, give users the 
opportunity to explore information quickly and on their terms. With the 
rise of big data, almost every aspect of modern life—shopping patterns, web 
searches, voter behavior—has become a data source. Nearly every aspect of 
modern life involves some form of data collection, to the point that missing 
data makes as much news as the data itself (Bach, 2018). The pervasiveness 
of big data provides unique opportunities for us to explore the world around 
us through numbers and statistics. Data and its collection, however, removes 
information from the original phenomenon that it represents and can be 
difficult for individuals without specific training or expertise to understand. 
This gap in understanding provides a unique problem space for designers to 
explore methods for making information accessible. This investigation looks 
at one particular problem space for understanding, uncertainty, but it points 
to further issues that arise from the pervasiveness of data and visualization, 
including the accessibility of scientific information and the necessity of visual 
literacy.

For designers, the accessibility of data and new forms of information 
provide a unique opportunity for storytelling and information design. 
Uncertainty, in particular, offers a particular challenge to those wishing to 
convey a complete picture of information. Currently there is not a robust, 
experiential visual language for conveying uncertainty. While there are methods 
for visualizing uncertainty in scientific or statistical figures, those graphics are 
typically created for audiences familiar with the visual language of scientific 
data, making them inaccessible to non-expert audiences. These graphics cannot 
be interpreted intuitively and require a great deal of background knowledge to 
make sense of their forms. Designers can employ user-centered design methods 
and research to expand visualization techniques to non-expert audiences. 
Using a human cognition framework, this investigation explores experiential 
techniques that data journalists can use to convey uncertainty in statistical 
and scientific information to a non-expert audience.
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PROBLEM STATEMENT & JUSTIFICATION

Big data has become a pervasive part of our society. Almost every aspect of 
modern life—air quality, weather conditions, voter behavior, the performance 
of sports teams, and more—is statistically measured and forecast (Nguyen & 
Lugo-Ocando, 2016). Despite the prevalence of scientific and statistical data, 
the visual language that scientists and statisticians use to present information 
often requires an expert level of understanding to interpret, making the 
visuals that use this language inaccessible to the majority of the population 
(Grainger, Mao, & Buytaert, 2016). Furthermore, the software scientists and 
statisticians use also requires a level of user knowledge and produces static 
and inaccessible visualizations that exacerbate the gap between experts and 
non-experts. In many ways the news media has stepped in to bridge this divide. 
Data journalism, or storytelling through infographics and data analysis, has 
become a prevalent part of mass media, with infographics and visualizations 
appearing in print, online, and in television coverage (Bradshaw, n.d.). The New 
York Times has an entire section—The Upshot—devoted to the exploration of 
data as it relates to current events, and Nate Silver’s FiveThirtyEight reaches 
upwards of 10 million unique users each month (Silver, 2017a). Visualizations 
produced for the mass media can give users a false sense of truth, especially 
when conveying predictive data, or data that forecasts future activity, such 
as that found in election projections or weather forecasts (Spiegelhalter, 
Pearson, & Short, 2011). Few visualizations show instances of doubt behind 
the quantities, giving infographics in news media an unwarranted authority. 
Uncertainty, however, exists in all data and subsequent visualizations, and 
can stem from all phases of data collection and presentation, including the 
nature of the information itself, the method of visualization, and the biases of 
the analyst (McInerny et al., 2014; MacEachren et al., 2012). All information 
contains elements of uncertainty, such as contradictory data points or outliers 
in a data set. For the purpose of this investigation, uncertainty is incomplete or 
imperfect knowledge arising from a variety of factors including: measurement 
precision, completeness, inferences, disagreement, and credibility (Skeels, Lee, 
Smith, & Robertson, 2010). Creators of information graphics, however, strive 
for completeness, and therefore leave out uncertainty, partially to make the 
information easy to digest quickly, and partially to feed the audience’s desire for 

Data Journalism

Storytelling through 

infographics and data 

analysis.

Uncertainty

Incomplete or imperfect 

knowledge.

Data point

A piece of information.

Outlier

A data point on a graph 

or in a set of results that 

is very much bigger or 

smaller than the next 

nearest data point.
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certainty. Including representations of uncertainty in information visualizations 
provides a more robust picture of the data being conveyed. The presentation 
of data has an impact on its meaning to a user, and, consequently, on the user’s 
ability to make decisions based on that data (Bond et al., 2007). Predictive 
data visualizations are used across news media and cover topics ranging from 
weather forecasts to election polling. In particular, these visualizations can 
have mundane impacts on daily life, for instance forgetting an umbrella on a 
rainy day, or they can impact major life decisions, like choosing to evacuate 
before a hurricane.

Recently, predictive visualizations in data journalism have become a 
standard part of national politics. Consider, for example, the pervasive role of 
statistical projections in the 2016 Presidential election. Users interpreted the 
visualizations and analysis presented by data journalists such as Nate Silver 
from FiveThirtyEight as showing Clinton with an insurmountable lead all the 
way up to November 6th, 2016, only to have Donald Trump win the Electoral 
College and the presidency (Figure 3). In his analysis of the journalism leading 
up to the election, Silver points to “a failure to appreciate uncertainty” (2017b). 
Throughout the campaign, the polls used to create FiveThirtyEight’s and other 
sites’ visuals had “hallmarks of high uncertainty,” yet the infographics and 
visualizations showed no sign and instead relied on percentages and odds that 
suggested Clinton’s lead was inevitable, potentially impacting voter behavior 
(Silver, 2017b).

Part of the challenge for mass media infographics is the lack of a robust, 
experientially based visual language for conveying uncertainty in the data. This 
problem also exists in the scientific community where even the definition of 
uncertainty is debated (Skeels et al., 2010). Furthermore, non-experts do not 
always understand the techniques experts use. As a result of these challenges, 
journalists often leave uncertainty out of visualizations and simply incorporate 
it into the accompanying text or the caption, relying on the user to engage 
with the text and not just look at the graphic representation.

Figure 3: 2016 

Visualization (Below) 

FiveThirtyEight’s 

visualizations of the 

2016 election relied on 

percentages to convey the 

uncertainty involved in  

the data. 
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A design approach can help non-experts understand scientific or statistical 
data by visually translating what is happening behind the numbers. Traditionally, 
a tension exists between scientific visualizations and design aesthetics. In the 
scientific community, visualizations that are aesthetically sophisticated or 
especially engaging to lay audiences are often looked upon as untrustworthy 
(McInerny et al., 2014). Scientific and statistical figures are typically created 
for audiences familiar with the visual language of scientific data, which, in 
turn, provides an opportunity for graphic design methods and research to 
expand those techniques to non-expert audiences (Grainger et al., 2016). 
Visualizations in mass media are not, and should not be, simply pretty pictures 
that break up a text, but must be designed as tools for understanding complex 
relationships that exist behind the scenes, in the numbers, and upon which 
any given visualization is derived. Designers can and should incorporate a 
full range of techniques to convey the true nature of information to a user, 
regardless of knowledge level—especially when designers, who are operating 
in interactive and time-based media, possess a variety of tools capable of 
telling the story behind the data. An approach grounded in our understanding 
of human experience and perception can focus on the cognitive needs of non-
experts by incorporating techniques familiar in communication design, such 
as the use of interaction, narrative, and animation, not traditionally employed 
in expert-oriented data visualization. 

Developing techniques for conveying uncertainty to non-experts requires 
a broad understanding of the techniques experts in the scientific community 
use, as well as how a user cognitively interprets information visualizations. This 
knowledge can support designers’ exploration of techniques for visualizing 
uncertainty, which will, in turn, result in the field’s ability to pinpoint methods 
that can experientially convey uncertainty to non-expert audiences. It is also 
important to consider potential users when developing these techniques.  
A design approach can visually translate what is happening behind the numbers 
in a way non-experts can understand. Through a review of the literature, an 
examination of precedents, and several graphic studies, this investigation 
attempts to develop a design vocabulary for visualizing uncertainty to a non-
expert audience.

ASSUMPTIONS AND LIMITATIONS

Assumptions

For the purposes of this investigation, I assume that users want an accurate 
understanding of the data they encounter in news media and that the 
uncertainty involved in a data set can add to that understanding. News media 
is defined as those elements of the media that focus on delivering news to the 
general public (“News media,” n.d.). This investigation focuses on digital and 
interactive news formats, like those found on websites and apps. Furthermore, 
I assume these visualizations are part of a larger article or piece of journalism 
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that provides greater context to the visualization. These visualizations 
convey information on one specific part of a larger phenomenon and provide 
a focused analysis of that moment for the user to explore, rather than an 
overarching explanation of the whole phenomenon. Limiting the scope of these 
visualizations allows for studies to highlight specific moments of uncertainty 
that could be incorporated into larger scale visualizations.

From the literature review, it is clear that information visualizations 
provide a real challenge to understanding for non-expert audiences, especially 
for users with limited visualization literacy. This study assumes a minimal 
visual literacy level and looks for experiential methods to overcome challenges 
to interpretation. However, some basic skills are assumed, such as the ability 
to interpret an x-y axis.

Limitations

To move forward with this investigation, it is important to make clear what 
this investigation is not. This investigation does not address three-dimensional 
methods for visualizing uncertainty. 3D visualization methods introduce 
new comprehension and literacy issues that are beyond the scope of this 
investigation and further complicate information visualization methods. 

This research is not a definitive statement about the cognitive processes 
involved in interpreting information visualizations. It employs a human 
cognition framework for data visualization to relate visualizations to specific 
cognitive processes—which does not suggest that multiple processes are 
not involved in working with each visualization, nor that a single process is 
dominant. This human cognition framework simply provides a conceptual 
space within which to ground design investigations that also acknowledge 
cognitive processes. 

Furthermore, while I have made every attempt to maintain the accuracy 
of the data used to create mini explorations and studies, I am not an expert 
in statistics. The studies in this investigation should be examined for their 
design and the experiential methods that convey uncertainty, rather than for 
statistical inaccuracies or mistakes.
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Literature Review

This research began with an in-depth inquiry into information visualizations, 
visual literacy, and the relationship between non-experts and forecasted 
information. This brief review of the literature points to overarching issues 
between information visualizations created for the mass media and the language 
of science and statistics. While visualization is a valuable cognitive tool, the 
visual language used by experts is often inaccessible to most of the public, and 
can provide flawed or even false insights.

MEANING FROM VISUALIZATIONS

Designers create information visualizations to convey complicated information 
in a quick and efficient manner, however, the process of deriving meaning from 
visualizations is dependent on the user. When designers create information 
visualizations, they rely on the assumption that the user is able to interpret 
the patterns, trends, and correlations represented (Börner, Maltese, Balliet, 
& Heimlich, 2016). Meaning itself is not set by the graphic, but created in the 
mind of the user; as Chandler posits, meaning is a construction, with a user 
making sense of what is seen or heard (2004). Visual images themselves can 
be interpreted in many ways and depend on users understanding the system of 
symbols portrayed (Drucker, 2014; Davis, 2012). Peirce calls the consumption of 
signs in images, signification. Signification is a mental process where meaning 
resides in the mind of the user (Davis, 2012). Information visualizations 
themselves rely heavily on users to derive meaning from what they are shown. 
To create successful information visualizations, designers must consider the 
interpretative abilities of the end user and the significance of the visual images 
and symbols used to convey that information. 

An image, however, does not exist in a vacuum. Peirce and other theorists 
assert that the context of an image can impact its interpretation (Davis, 2012). 
Chandler (2004) stated that the medium through which a visualization is 
conveyed can impact the message’s meaning and effectiveness. It is difficult 
to separate an image from the technologies that produce it, as the image itself 
embodies the qualities of the media in which it exists (Drucker, 2014). With 
the production of meaning relying on the mind of the user, designers working 
on information visualizations must consider carefully the context, medium, 
and tools they use to create visualizations.
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INFORMATION VISUALIZATION AS COGNITIVE AID

Information visualizations rely on users’ ability to interpret and make sense of 
abstraction to convey complicated entanglements of ideas with an economy 
of means, or through simple forms and representations (Cairo, 2014; Tufte, 
2013). Adults encounter visuals in a wide variety of contexts including work 
and everyday life (Börner et al., 2016). These visualizations become cognitive 
aids that assist users in understanding issues and making decisions.

Visualizations act as cognitive tools by compressing complicated 
information into manageable pieces, such as signs and symbols, focusing 
on what is most important, and eliminating extraneous information (Ryan, 
2016). This compression is a form of abstraction, like those Latour described 
as cascades of inscriptions (Roth & Tobin, 1997). Latour argues that in order 
to understand different phenomena, humans collect information in slightly 
abstracted forms, then create further abstractions to represent that information, 
thereby creating cascades of inscriptions (Roth & Tobin, 1977). These inscriptions 
act as cognitive aids for users to share and translate information, however, 
they also are removed from the phenomena they represent, which can obscure 
information or make it difficult for users to fully understand a phenomenon. 
Our interactions with these processes are a type of external cognition, which 
decreases the users’ required cognitive effort and allows for the processing of 
more complex information (Scaife & Rogers, 1996). Abstracting information 
away from the initial phenomenon is part of human intelligence. Norman 
argues that humans abstract away irrelevant details in a way that creates new 
experiences, insights, and creations (1993). Abstraction provides a means for 
humans to better comprehend complicated phenomena and ideas, but designers 
must be aware of how visualizations obscure reality.

 Psychologists have demonstrated that the human brain has separate 
systems for interpreting verbal and nonverbal information. Dual Coding 
Theory (Paivio, 1991) posits that a nonverbal systems, which is governed by 
structural and spatial dimensions, is separate from a verbal system, which 
relies on sequential structures (Figure 4). The human ability to code the same 
stimulus, or piece of information, through two different channels (verbal and 
nonverbal) increases our ability to remember and process a piece of information 
(Paivio, 1991). Information visualizations can use both verbal and nonverbal 
channels to give users greater opportunities to process and remember the 
information presented.

Cognitive Load Theory posits that some materials are difficult to understand 
and apply because they require processing several elements simultaneously. 
For example, 2 + 2 is easier for us to solve than 25670 + 235905 because it has 
fewer elements to process simultaneously. Cognitive load theory deals with 
the creation of schemas as a means of reducing the demands on short term 
memory and pull from long term memory (Moreno & Park, 2010). Non-experts 
may not have a schema for visualizations, which can increase cognitive load 
and interfere with the primary goal of interpreting the visualization. This 

Cascades of Inscriptions

A series of representations 

of phenomena created by 

scientists and researchers.

Dual Coding Theory

Posits that the human brain 

has separate systems for 

interpreting verbal and 

nonverbal information

Cognitive Load Theory

Materials can be difficult to 

process because they require 

a lot of mental effort.
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Verbal 
System

Nonverbal 
System

Working Memory

Referential Connections

verbal material

visual material

Stimulus

Figure 4: Dual Coding 

Theory

(Left) Information that uses 

both verbal and nonverbal 

channels provides greater 

opportunities to process 

information.

problem suggests that a simplified means of representation is important and 
that building off of users’ existing schemas, or allowing for the development 
of new ones, can assist in interpreting information visualizations correctly.

Other research on the efforts involved in information visualizations 
suggests that deriving meaning from visualizations involves numerous cognitive 
processes, including: attention, working memory, pattern recognition, encoding, 
long-term memory, and decision-making (Patterson et al., 2014). Patterson et al. 
developed a useful framework for influencing those processes in information 
visualizations, providing guidelines for designers to build off cognitive research 
and give users extended opportunities for gaining insights (2014).

Through information visualizations, designers have an opportunity 
to create powerful cognitive tools that lighten cognitive load and increase 
understanding. Designers, however, must consider psychological theories of 
cognition and memory when creating visualizations. Information visualizations 
are not art; rather, they are carefully engineered tools (Grainger et al., 2016).

VISUALIZATION LITERACY 

While information visualizations can be valuable cognitive aids, they often 
require a level of technical literacy many users do not have. Börner et al. 
(2016) define visualization literacy as “the ability to make meaning from and 
interpret patterns, trends, and correlations in visual representations of data” 
(p. 200). Studies of non-expert audiences point to strong empirical evidence 
that many users “cannot name or interpret data visualizations beyond very 
basic reference systems” (Börner et al., 2016, p. 210). This research suggests 
that technical names are unfamiliar to most people and the lack of a cohesive 
language behind visualizations makes it difficult for those without advanced 
levels of STEM education to understand many forms of visualization (Börner et 
al., 2016). Authors point out that the lack of a language for data and information 
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visualization, a necessary component of human learning, makes it harder, if not 
impossible to learn or talk about visualizations. Other studies on non-expert 
audiences suggest that scientific visualizations remain broadly inaccessible 
because they emphasize static explanations of research that require specialist 
expertise to understand (McInerny et al., 2014). The literature and research 
on visualization literacy suggests that visualizations created for non-expert 
audiences must be easily discernible, rather than relying on complex visual 
languages and codes.

VISUALIZATIONS IN DATA JOURNALISM

Information visualizations have become increasingly popular in mass media; 
however, the rise of data journalism has led to questions about its impact 
on journalistic ethics. Journalist and information designer Alberto Cairo 
(2014) posits that the “point of journalism is to increase understanding while 
minimizing harm” (p. 25). Researchers and information designers see data 
journalism as a way to increase understanding about complex issues quickly, 
with visualizations condensing information into visuals that can be digested 
in a matter of seconds (Ryan, 2016). The nature of data journalism and the 
methods used to create visualizations, however, may provide a skewed or 
flawed version of reality. Spiegelhalter et al. suggest that the processes used 
are often inherently biased, with statistical analysis and the angle of approach 
biasing the creation of the graphic itself; for example, showing death rates 
rather than survival rates (2011). Furthermore, users often do not question 
graphical representations, giving visuals a sense of authority that may not be 
warranted (Cairo, 2014; Schrager, 2014). This combination of inherent bias 
in methods and the air of authority given to visualizations has led journalist 
Allison Schrager to label data journalism “opinion journalism given more 
credibility” (2014). Overall, the quality of graphics depends on the quality of 
reporting and research, or the information being conveyed (Cairo, 2016). For 
information visualizations to provide a full and robust depiction of information, 
designers should include depictions of uncertainty rather than abstracting 
information to a point that uncertainty is removed.

DESIRE FOR CERTAINTY

Information visualizations in mass media satisfy users’ desire for certainty, in 
some ways at the expense of understanding. Psychologically, humans have a 
hard-wired preference for narrative or deterministic storytelling, which can 
lead to misinterpretation of visualizations and information (Ryan, 2016). Mass 
media and journalism cater to this desire for certainty to increase usership, 
which conflicts with the uncertain and inconsistent nature of reality (Cairo, 
2016). Furthermore, users often do not question graphical representations 
(Cairo, 2014). In cartography, this phenomenon of accepting information 
presented in map form as true, simply because there is a graphic to explain 
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the information, is called “cartohypnosis” (Boggs, 1947). When a user does not 
question the information presented, she is accepting the creator’s conclusions 
as fact, which can be problematic considering the inherent biases of information 
visualization, like data exclusion and manipulation (Schrager, 2014). When 
designing for uncertainty, designers must make representations clear to combat 
users’ tendency to misinterpret information in favor of certainty. 

THE PROBLEM WITH PROBABILITIES

Probabilities and frequencies are often used in information visualizations to 
convey uncertainty; however, research has shown that audiences struggle to 
understand their meaning or how to work with multiple probabilities. One 
study found that 25% of US participants given three different frequencies, 
specifically 1 in 100, 1 in 1000, and 1 in 10, could not determine which number 
represents the biggest risk of getting a disease (Spiegelhalter et al. 2011). 
Furthermore, audiences’ pre-wired desire for determinism and certainty 
leads them to translate probabilistic information into fixed terms, making it 
difficult to properly interpret information, as demonstrated, for example, in 
a weather forecast that displays percentages and probabilities (Ryan, 2016). 
In the case of weather forecasts, people interpret a forecast of 90% chance of 
rain in multiple ways: it will rain for 90% of the day, 90% of an area will see 
rain, or 90% of users will see rain, when in actuality it is a percentage based on 
confidence and area that gives the percent chance that rain will occur in some 
part of the area (Ryan, 2016; Spiegelhalter 2011). This failure to understand and 
interpret basic frequencies provides an added challenge when representing 
uncertainty and can lead to flawed decision-making.

Graphical representations have been shown to aid users in interpreting 
probabilities. Spiegelhalter et al. (2011) point to pie charts and other visuals 
that provide parts-to-whole comparisons as easily interpretable visuals 
for probabilities. Other researchers however caution that the information 
being conveyed has to be complicated enough to warrant a visual (Wright, 
2009), which suggests that information dealing with multiple probabilities or 
percentages could benefit from visualization, while simpler probabilities may 
not. Overall, the visualization and representation of probabilities provides 
a unique challenge, requiring information designers to consider both the 
complexity of the information and the visualization itself.

EXPLORATORY RATHER THAN EXPLANATORY

Much of the literature surrounding information visualization emphasizes the 
need for interactive visualizations that users can explore, rather than static 
explanatory figures. McInerny et al. (2014) point out that “science is strongly 
biased towards ‘explanatory’ figures that summarize information rather than 
producing ‘exploratory’ knowledge interfaces where audiences can ‘learn 
by doing’” (p. 153). Researchers suggest that interactive visualizations can 
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engage users of different literacy levels and needs (McInerny et al., 2014; 
Wright, 2009). Interactive visualizations can act as cognitive tools, allowing 
users to explore at their own pace, and decide what pieces of information 
are valuable to their own needs (Grainger et al., 2016). Wright’s research on 
users’ interactions with interactive visualizations suggests that users need 
tools to limit or refine information to aid user understanding, much like a 
shopping interface (2009). Introducing uncertainty into visualization, by 
nature, suggests complicating the abstraction. Information designers working 
with representations of uncertainty must consider how to scaffold interactive 
visualizations so that introducing uncertainty does not overly complicate the 
interactions and impair usability. Interactive visualizations have a unique 
opportunity to engage a variety of users, but to function properly they must 
scaffold information to be usable by a variety of users with minimal guidance 
(Wright, 2009). Since the meaning of a visualization is created by the user, and 
not the visualization itself, designing visualizations as interactive interfaces 
gives users more opportunities and tools to derive meaningful information 
that fits their needs or interests.

UNCERTAINTY AND DECISION MAKING

Information visualizations can be valuable decision-making tools, but leaving 
out uncertainty provides a skewed picture, reducing the value of visualizations 
for making informed decisions. When making decisions, the problem most 
people face is not access to information, but the ability to assimilate and 
interpret information in a timely manner (Wright, 2009). By visualizing 
information in a way that conveys uncertainty, users are empowered to 
make educated decisions. Presenting a range of possible outcomes can help 
decision-makers understand the inherent uncertainty of a scenario and aid in 
decision-making (Grainger et al., 2016). However, the presentation of a data 
set, as well as the underlying uncertainty, impacts the data’s value for decision 
making (Bond et al., 2007). Information designers must convey a full picture 
in a manner that users can interpret and tailor to their own needs. 
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Figure 5: Uncertainty 

Types (Left) This 

investigation looks at 

inference, disagreement, 

completeness, and precision 

uncertainty, which come 

from the framework 

developed by Skeels et al. 

(2010).

Conceptual Framework

The framework for my investigation is based on types of uncertainty, cascades 
of inscriptions, external cognition, and Patterson et al.’s human cognition 
framework for information visualizations. 

TYPES OF UNCERTAINTY

As we collect data and convert into information through analysis and the 
creation of charts, tables, and graphs, uncertainty is introduced. Collection 
methods, analysis, and visualization techniques can all introduce uncertainty 
into information. Skeels et al. provide a definition and classification system for 
different types of uncertainty present in a data set (2010). The classification 
system covers multiple variations of uncertainty commonly found in scientific 
and statistical information. This investigation will focus specifically on four 
types of uncertainty (Figure 5):

Inference: Uncertainty arising from predictions and the meaning 
given to data.

Disagreement: Conflicts in data, whether from multiple measures, 
different data sets, or from multiple conclusions being drawn from 
the same data set.

Completeness: Uncertainty arising from concerns about sampling 
methods and generalizing to the population.

Precision: Any variation, imperfection or theoretical precision 
limitations in measurement techniques that produce quantitative data.

Skeels et al. include credibility as a type of uncertainty, meaning uncertainty 
arising from an information source that produces data in conflict with other 

Inference Disagreement Completeness Precision
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data (2010). For this investigation, credibility falls within the other types of 
uncertainty. This classification system provides a framework for categorizing 
the visual techniques developed in this study based on the type of uncertainty 
being conveyed.

CASCADES OF INSCRIPTIONS

To make sense of the world around us, scientists, mathematicians, and 
researchers translate phenomena into inscriptions, such as collected data. 
Usually, these inscriptions are translated multiple times before a phenomenon 
is represented in an interpretable form, resulting in what Latour calls a cascade 
of inscriptions (Roth & Tobin, 1997). Cascades of inscriptions represent the 
relationship between an observed phenomenon and the mathematical and 
visual structures, as in information visualizations, that describe and represent 
the original phenomenon (Figure: 6). 

This process of translation removes inscriptions from the phenomena they 
represent and can result in information gaps. For example, when physicists 
examine a rolling ball, they translate it’s motion into numbers like velocity and 
acceleration, which are used in equations, then tables, and finally graphs and 
visualizations (Roth & Tobin, 1997). Each of these levels of abstraction is an 
individual inscription. Experts, such as scientists and researchers, have been 

Each successive inscription is further removed from the actual phenomenon

Physical Phenomena Inscriptions Cascades of Inscriptions
are represented by which make up

Physical Phenomenon Collected Data Charts & Tables Visualizations

for example

Figure 6: Cascades of 

Inscriptions (Above)  

Latour’s theory describes 

the process of translating a 

physical phenomenon into 

abstract representations, 
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exposed to the language and process of creating inscriptions and therefore 
no longer see the gaps between inscriptions and real world phenomenon. In 
contrast, non-experts can have trouble relating inscriptions back to the visual 
phenomenon they represent and can get lost in these gaps. Non-experts’ lack 
of experience with cascades of inscriptions can impede their understanding 
of inscriptions, like information visualizations, and their ability to work with 
the information presented. 

Uncertainty, which is introduced at all points of the inscription process, 
further complicates the matter. Visualizations often leave out uncertainty, 
further removing inscriptions from the phenomena they represent (Bond et 
al., 2007; Roth & Tobin, 1997). This omission makes it even more difficult for 
non-experts to understand scientific and mathematical information.

In this investigation, I use the idea of cascades of inscriptions as a 
framework for thinking about the different viewpoints of expert and non-
expert users. Incorporating uncertainty into information visualizations is a 
means of moving these inscriptions closer to the phenomena they represent, 
providing non-experts with a more complete picture.

EXTERNAL COGNITION

The relationship between a user’s internal thinking processes and the 
external representations of the world around her is referred to as external 
cognition (Scaife & Rogers, 1996). External cognition explores the role played 
by external representations on our internal mental processes, providing a 
framework for how external aids, like information visualizations, can support 
a user’s cognitive processing of information.

External cognition builds off of the idea that humans can devise external 
aids to extend human intelligence and enhance cognitive abilities (Norman, 
1993). Norman (1993) argues that “the powers of cognition come from 
abstraction and representation,” that humans have the unique ability to 
represent the world and the events that occur around them in new media and 
to abstract important details away from the irrelevant, and in doing so, we 
create new experiences through abstraction that are totally separate from the 
original phenomenon (p. 43). Information visualizations are themselves a new 
experience created through the abstraction of a natural phenomenon. Scaife 
and Rogers (1996) define three central characteristics of external cognition:

Computational Offloading: The extent to which representations 
reduce the amount of cognitive effort required to solve equivalent 
problems (p. 188).

Re-representation: The different external representations of the same 
phenomenon, which can make problem-solving easier or more difficult, 
and which can present variable perspectives or information (p. 189).
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Graphical Constraining: The way graphical elements in a representation 
are able to constrain the kinds of inferences that can be made (p. 189).

These central characteristics provide a framework for understanding how 
information visualizations can aid in a user’s cognitive processing. 

A visualization that does not take into account a user’s cognition is 
simply data, or unorganized and unprocessed facts that do not convey 
specific meaning. A user must be able to cognitively process a visualization to 
translate the data it represents into useful information that adds value to the 
understanding of a subject (Baškarada & Koronios, 2013). From information, 
a user is able to generate knowledge, or organized information, that can be 
used to aid decision making (Baškarada & Koronios, 2013). When creating 
information visualizations, designers cannot simply present information 
without consideration for the end user’s ability to interpret the data presented; 
otherwise the visualization is simply a form of data that cannot be converted 
to information and knowledge.

PATTERSON ET AL.’S HUMAN COGNITION FRAMEWORK  
FOR INFORMATION VISUALIZATIONS

Information visualizations have the potential to serve as powerful cognitive 
tools. Patterson et al. provide a design framework to influence different 
aspects of human cognition and as a means of inducing reasoning, insight, and 
understanding (2014). In contrast to the work on external cognition which 
focuses on the role of visualizations as tools, Patterson et al. examines the role 
of a user’s cognitive processes during interactions with visualizations(Figure 7). 

Patterson et al.’s framework involves six cognitive processes—attention, 
working memory, pattern recognition, encoding, long-term memory, and 

(Exogenous)
Attention Capture

Working Memory

Controlled 
(Endogenous) 

Attention

Stimulus

Encoding Long Term Memory Decision

Figure 7: Human Cognition 

Framework for Information 

Visualization (Left) 

Patterson et al.’s framework 

focuses on a user’s internal 

cognitive processes that 

engage with an information 

visualization.
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decision-making (2014). From these processes, Patterson et al. provide six 
leverage points to influence the cognitive powers of information visualizations. 
Patterson et al.’s (2014) proposed leverage points are :

Capture exogenous attention: Utilize noticeable cues to drive 
exogenous attention, alerting users to changes in or important attributes 
of a visualization (p. 47). Exogenous attention is the capturing of 
attention with triggering stimuli in the visual field, often in the 
periphery.(p. 42).

Guide endogenous attention: Provide interaction options to assist 
endogenous, or active, attention and minimize distracting information 
(p. 48).

Facilitate chunking: Choose visualization parameters that provide 
strong grouping cues to facilitate the chunking of information, which 
will minimize the effects of working-memory, or the part of short-
term memory that deals with immediate processing, which has severe 
capacity limitations (p. 48).

Aid reasoning with mental models: Organize information based on 
mental models in order to provide strong retrieval cues for knowledge 
structures in long-term memory and aid reasoning (p. 49).

Aid analogical reasoning: Structure information in order to provide 
strong retrieval cues for knowledge structures (mental models) to 
aid in analogical reasoning (p. 51).

Encourage implicit learning: Develop training regimens for learning 
about patterns within a visualization. Implicit learning implies 

“learning without being able to verbalize what has been learned” (p. 52). 

These leverage points provide a means of exploring different methods of 
visualizing uncertainty to engage a user’s cognitive processes. The final leverage 
point, “encourage implicit learning,” requires time and prolonged exposure to 
visualizations, so it would fall outside the scope of the studies created for this 
investigation. For the purposes of this investigation, “aid reasoning with mental 
models” and “aid analogical reasoning” have been combined into one point, 
aid reasoning with mental models and analogies. The two points both involve 
accessing a users’ existing mental models in order to further understanding.

By aligning the human cognition framework for data visualization 
developed by Patterson et al. (2014) with the work of Scaife and Rogers (1996) 
on external cognition, the combined framework permits the development 
of techniques for visualizing uncertainty that consider both external 
representation and internal cognition processes.

Exogenous Attention

The capturing of attention 

with triggering stimuli in 

the visual field.

Endogenous Attention

Active attention
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COMBINED CONCEPTUAL FRAMEWORK

To represent a physical phenomenon, we create cascade of inscriptions, or 
abstracted representations, including information visualizations. Visualizations 
affect a user’s mental processes through computational offloading, re-
representation, and graphical constraining. Internally, cognitive processes, 
including attention, working memory, pattern recognition, encoding, long-term 
memory, and decision-making, are used to interpret and utilize information 
visualizations. The framework (Figure 8) includes six design concepts that 
can be used to leverage these cognitive processes when creating information 
visualizations (Patterson et al., 2014).

Physical Phenomena Inscriptions
are represented by which make up

Cascades of Inscriptions

including

Information Visualizations
engage users’act as

impact

allow for
Cognitive ProcessesExternal Cognitive Aids

Capturing Exogenous 
Attention

Guiding Endogenous 
Attention

Facilitating Chunking

Aiding Reasoning with 
Mental Models and 

Analogies

Computational 
Offloading

Re-representation

Graphical Constraining

leveraged by

attention, working memory, 
pattern recognition, encoding, 
long-term memory, and 
decision making

 a graphic that encodes information 
in order to function as a cognitive 
aid in the process of communicating 
information

representation of the 
relationship between an 
observed phenomenon and 
the mathematical and 
visual structures that 
represent it

representations remove 
elements of uncertainty, 
including issues of 
inference, disagreement, 
completeness, and 
precision 

Figure 8: Conceptual 

Framework (Below) The 

combined conceptual 

framework provides 

leverage points and 

reference points for  

the development of 

designed studies.
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CONCEPTUAL MATRIX

Studies for this project fall into a matrix based off of the conceptual framework 
(Table 1). Studies use one of four data sets that depict political, economic, and 
weather information.

PRIMARY RESEARCH QUESTION

How can information visualizations commonly found in news media 
incorporate representations of uncertainty to facilitate non-expert decision 
making about current events?

SUB-QUESTIONS

Types of Uncertainty. How can information visualizations convey inference, 
disagreement, completeness, and precision uncertainty beyond conventional 
visualization strategies?
 
Capture Exogenous (Peripheral) Attention. What visual qualities in 
information visualizations can serve to capture a user’s exogenous attention 
in the conveyance of uncertainty?
 
Guide Endogenous (Controlled) Attention. What interactive qualities in 
information visualizations can serve to guide a user’s endogenous attention 
in the conveyance of uncertainty?
 
Facilitate Chunking. How can chunking visual elements in an information 
visualization convey uncertainty?
 
Aid Reasoning with Mental Models and Analogies. How can designers 
leverage visual analogies and a user’s existing mental models in information 
visualizations to convey uncertainty? 

Table 1: Conceptual Matrix 

(Above) The conceptual 

framework translated 

into a matrix for visual 

explorations.

Inference 
Uncertainty

Disagreement
 Uncertainty

Completeness 
Uncertainty

Precision 
Uncertainty

Capture Exogenous 

Attention

Guide Endogenous 

Attention

Facilitate Chunking

Aid Reasoning With Mental 

Models and Analogies
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DESIGN RESEARCH METHODS

The methodology (Figure 9) for this investigation employees a number 
of design-centric approaches, with the aim of developing a diverse set of 
experiential techniques for visualizing uncertainty. 

Case Studies

The investigation began by examining existing methods for visualizing 
uncertainty, which resulted in a set of small scale case studies. Case studies 
involve the investigation of single events or instances in context and help 
designers understand existing phenomena or designed solutions for 
comparison, information, or inspiration (Martin & Hanington, 2012). 

Research Through Design

The majority of my investigation involves the development of visual studies 
and prototypes as a means of research through design. According to Martin and 

Figure 9: Methodology

(Above) The methodology 

for this investigation 

includes case studies, 

parallel prototyping, and 

research through design.

Research Through Design

Case Studies

Initial Studies

Parallel Protoying

Conceptual Framework

Prototypes

Scenarios

Task Analysis

Case Studies 

Investigations of single 

events or designed 

instances in context.
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Hannington (2012). “[R]esearch through design recognizes the design process 
as a legitimate research activity” (p. 146). Research through design integrates 
theoretical and conceptual frameworks with the design process to ground 
explorations and studies. Through ideation, experimentation, and critical 
reflection, designers advance design scholarship and pose new questions about 
design issues. This research had three distinct phases: a study with a graduate 
graphic design studio, initial studies I created, and more in-depth final studies. 

Parallel Prototyping with a Graduate Level Graphic Design Studio

Building off of the information gleaned from case studies, I worked with a 
graduate level studio to develop studies exploring uncertainty. This exercise 
had several designers prototyping different methods in parallel to my own 
design explorations through parallel prototyping. Martin and Hannington define 
parallel prototyping as simultaneously exploring multiple design opportunities 
as a means of keeping designers from fixating on a design direction too early 
(2012). The process encourages divergent explorations and the exploration 
of multiple design elements.

Initial Explorations and Studies

My initial studies involved rapid iteration and reflection, with the aim of 
familiarizing myself with the visual language and existing methods for 
visualizing uncertainty. For later studies, I designed within my combined 
conceptual framework as a means of grounding design interventions and user 
scenarios, task analysis, and prototyping as methods for developing design 
interventions.

Scenarios

Each of my studies is grounded in a scenario that explores a user’s interactions 
with the design intervention. Scenarios are narratives that explore the future use 
of an artifact or system from a user’s perspective and how that design integrates 
into the user’s life and activities (Martin & Hanington, 2012). Scenarios focus 
more on what technology enables than the details of the technology itself.

Task Analysis

After developing scenarios for my studies, I completed a task analysis. A task 
analysis breaks down the elements of a user’s interactions with a system. It 
breaks the task down into distinct actions and categorizes those actions based 
on their relationship to the system and the user (Martin & Hanington, 2012).

Research Through Design 

Integrating theoretical and 

conceptual frameworks to 

ground design explorations 

and studies.

Parallel Prototyping

Simultaneous design 

explorations by multiple 

designers.

Task Analysis

A break down of a user’s 

interactions with a system.

Scenarios

Narratives that explore the 

future use of an artifact 

or system from a user’s 

perspective. 
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Prototyping

The scenarios and task analysis informed the creation of information graphics 
and artifacts to explore methods for visualizing uncertainty. These artifacts, 
or studies, provide an example of visual techniques. Prototyping is the creation 
of artifacts for developing and testing ideas (Martin & Hanington, 2012). 
Prototyping allows designers to test concepts and potential users. Prototyping 
allows for critical examination of ideas in context and is an integral part of 
research through design.

PRECEDENTS

As part of my initial research, I sought to establish an understanding of the 
existing tools and methods used to represent uncertainty. These precedents 
come from statistical and scientific visualizations as well as methods used by 
major news outlets. Each visualization was evaluated based on the additional 
knowledge a user would need to interpret the graphic and the underlying 
information and the pros and cons of the overall strategy (Table 2). 

Box Plots

Box plots, or box and whisker plots (Figure 10), display the distribution of a 
data set through the data’s quartiles, or four equal groups that divide the data 
based on a particular variable (“Quartile, adj. and n.,” 2007). For example, the 
lower quartile is the lowest 25% of a data set while the upper quartile is the 
upper 25% of the data set (Agresti & Finlay, 2009). To really understand the 

Prototyping

The creation of artifacts 

for developing and testing 

ideas.

Table 2: Precedents 

Comparison (Opposite) 

The table analyzes the 

different precedents 

explored in this 

investigation.

Figure 10: Box Plot

(Right) Box plots convey the 

distribution of a data set, 

but require some statistical 

knowledge to interpret 

quickly, making them 

inaccessible to non-experts.
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Precedent Definition Additional Knowledge Pros Cons

Box Plots

(“Box and Whisker 
Plots - Learn about 
this chart and 
its tools,” n.d.)

(Agresti & Finlay, 
2009)

Box with lines extending from 
it to display data distribution 
through its quartiles

Median, quartiles, minimum, 
maximum, and outliers

Simple visual strategy

With prior knowledge, it’s 
easy to see uncertainty

Requires knowledge of 
statistical terms and ideas

Violin Plots

(“Violin Plot - Learn 
about this chart and 
tools to create it,” 
n.d.)

Combination of a box plot  
and a density plot to show  
the distribution of data. 
Contains a confidence 
interval, the median, and  
the interquartile range

Density, quartiles, 
interquartile range, median, 
and confidence interval

Adds more information than 
a box plot.

Visually interesting, density 
plot relates width to number 
of data points

Can make interesting 
comparisons between plots

Requires significant 
additional knowledge

More complicated than a 
box plot

Error Plots

(Krzywinski & 
Altman, 2012)

Bars used to show difference 
between two values. Often 
represent one standard 
deviation, standard error,  
or a confidence interval

Confidence interval, standard 
deviation, or standard error

Simple visual Requires considerable 
prior knowledge to fully 
understand

Can mean many different 
things, making it even more 
complicated for non-experts

Confidence Intervals

(Agresti & Finlay, 
2009)

An interval of numbers 
within which the parameter 
(point or value in question) is 
believed to fall.

Parameter, margin of error, 
confidence, limits

Conveys a substantial 
amount information

Requires statistical 
knowledge and 
understanding of the context

Hurricane Cone of 
Uncertainty

(Liu, Mirzargar, Kirby, 
Whitaker, & House, 
2015)

Represents the probable track 
of the center of a tropical 
cyclone, and is formed by 
enclosing the area swept out 
by a set of circles along the 
forecast track. The size of 
each circle is set so that two 
thirds of historical official 
forecast errors over a 5-year 
sample fall within the circle

Must know that cone does 
not represent size, rather a 
representation of uncertainty

Simple visual that is now 
familiar to many people

Does not facilitate important 
time and location specific 
queries

False sense of certainty in 
and outside the cone

Issues with misinterpretation

The New York Times 
Exit Polls Needle

(Wartik, 2017)

Two needles, one showing 
the confidence of winning 
and one showing the 
margin. These were updated 
continuously based on new 
returns. The confidence 
needle ventured closer to 
100% as the night wore on.

Basic understanding of 
elections or poll terminology 
(margin, confidence)

Simple and engaging graphic 
for users.

Uncertainty is captured 
by a moving needle that 
catches the user’s exogenous 
attention.

Way to qualify the paper’s 
predictions.

User cannot tailor the 
information and control the 
presentation

The metrics behind it are 
somewhat cloudy.

The Wall Street 
Journal Economic 
Survey Graphics

(“Econ Forecast - The 
Wall Street Journal - 
WSJ.com,” n.d.)

The Wall Street Journal uses 
solid bars to indicate the 
actual value of an economic 
indicator. For dates in the 
present, it uses red lines to 
indicate the average from 
their survey and lighter bars 
to show the range of the 
predictions.

It’s not clear that the solid 
line is an average or how 
many participants there 
are in the survey from the 
graphic. The fainter lines do 
not appear to have a key or 
any obvious meaning

Provides for a quick read, if 
you are familiar with error 
bars, etc. 

Depicts some of the 
uncertainty involved.

Requires familiarity with 
statistical diagrams or error 
bars.

Does not include a key. 
Geared towards those who 
work in finance or economics, 
rather than a non-expert 
audience.
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information presented by a box plot, a user needs to be familiar with numerous 
statistical concepts, including:

Mean: The most commonly used measure of the center. The mean 
is the sum of the data points divided by the number of observations. 
Often called the average (Agresti & Finlay, 2009).

Median: The data point that falls in the middle of an ordered data 
set (Agresti & Finlay, 2009).

Outlier: An observation that falls well above or below the bulk of the 
data (Agresti & Finlay, 2009).

Box plots give a user more information than a single point graphed on an x-y 
axis. With a box plot a user can see a range of possibilities, rather than a single 
point, thereby representing a whole data set and some of the uncertainty 
involved. A box plot requires expert knowledge to understand how to interpret 
the visualization. Each part of the visualization is encoded with meaning that 
cannot be interpreted without prior knowledge of the visualization and its 
code — a user cannot intuitively interpret what the different points of the plot 
mean or the lines within the box. A user has to know that the box represents 
the inner two quartiles of a data set, while the extended whiskers mark the 
minimum and maximum points of a data set. 

To an expert user, box plots are a visually simple way to display information. 
Someone with statistical knowledge can glean numerous insights about the 
spread or distribution of a data set from a box plot, but to someone who is 
unfamiliar with the statistical concepts involved, the visualization is unreadable 
and provides little insight into the information being presented, making it 
inaccessible to non-expert audiences.

Violin Plots

Violin plots combine a box plot and a density plot (Figure 11). Density plots 
visualize the distribution, or the spread, of data over a period of time (“Density 
Plot - Learn about this chart and tools to create it,” n.d.). Combining a box plot 
with a density plot shows the shape of the data as well as the quartile ranges 
and displays more information than a traditional box plot. 

Violin plots, however, run into the same interpretation issues as a box plot. 
A user has to understand what the different parts of the visualization mean in 
order to interpret the visualization. The shape of the violin plot does add some 
intuitive elements, as a user can easily interpret wider bumps as larger than 
smaller ones, yet that comparison means little if a user does not understand 
the rest of the visualization or what it shows about the data. 

Like box plots, violin plots rely on the user to understand the structure and 
statistical meaning of its parts, making the visualization strategy inaccessible. 
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Error Bars

Error bars (Figure 12) visualize the variability of information plotted on a 
graph (Krzywinski & Altman, 2012). They can be added to scatter plots, dot 
plots, bar charts, or line graphs to include a representation of the uncertainty 
to a visualization. Adding an error bar suggests that the data point or piece of 
information could vary from the point by the distance of the bar. 
Error bars can display numerous statistical elements, including:

Standard Deviation: Value that tells how varied data points are 
from the mean. A higher value means that the data is more spread 
out (Agresti & Finlay, 2009). 

Figure 11: Violin Plot (Left) 

While the shape does 

provide some intuitive 

elements, the rest of the 

plot encodes statistical 

information that requires 

prior knowledge on the part 

of the user.
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Figure 12: Error Bars (Left)

Error bars can mean several 

different things, making 

them difficult for a non-

expert to interpret.
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Standard Error: The standard deviation of a particular statistic 
across several samples (Agresti & Finlay, 2009). It provides a way to 
know how close a particular statistic from a particular sample is to 
the actual value for a whole group.

Confidence Intervals: An interval of numbers within which a 
particular statistic is believed to fall (Agresti & Finlay, 2009). For 
example, if I am looking for the percentage of voters who support 
Donald Trump, I would use a confidence interval to suggest that that 
value falls within a specified range of values based on my statistical 
analysis.

Minimum and Maximum Values: The highest and lowest values in 
a data set (“Error Bars” The Data Visualization Catalogue).

For an expert user, it may be easy to discern which statistical element an error 
bar represents, but for a non-expert user, even understanding the possible 
meanings is difficult. Standard deviation, standard error, confidence intervals, 
and minimum and maximum values are not easy concepts to understand, so 
while an error bar is incredibly simple, its meaning is difficult for non-experts 
to understand. 

Confidence Intervals

A confidence interval (Figure 13) gives a range of numbers within which a 
particular statistic or data point is believed to fall (Agresti and Finlay 110). 
Confidence intervals express uncertainty by reporting a range rather than 
one specific data point. It is a way of saying a piece of information could be 
this high or this low, but it builds off of statistical principles like margin of 
error, or how much an estimated value could differ from the actual value. 
For example, for a poll to have a four percent margin of error means that the 
number that comes from the poll’s sample, e.g., how many people will vote 
for a particular candidate, will fall within four percentage points of the real 
value for the entire population.

1.96-1.96

Figure 13: Confidence 

Interval (Right) 

Confidence intervals 

express uncertainty by 

giving a range of numbers 

within which a value might 

fall, but their abstracted 

structure is not intuitive  

or easy for non-experts  

to understand.
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While the margin of error is a powerful statistic, the way confidence 
intervals present that information make it difficult for a non-expert to 
understand. A user has to understand the meaning of the curve and the lines 
involved to interpret the curve and the different sections of the graph. Like 
box plots, violin plots, and error bars, without prior knowledge, confidence 
intervals are nearly impossible to interpret. 

Hurricane Cone of Uncertainty

During hurricane season, newspapers, broadcast news, and websites often 
use visualizations that depict a cone of uncertainty to display the forecasted 
path of a storm (Figure 14). The cone of uncertainty represents the probable 
track of the center of a tropical storm. In these graphics, the farther in the 
future the predictions, the wider the displayed path, forming a cone shape. 
The width and size of the path are determined by the historical accuracy of 
forecasts. For example, with less accurate forecasts 10 days out, the visual 10 
days out is much wider than 2 days out, thereby making the width of the cone 
the estimate of uncertainty for that prediction (Liu et al., 2015). 

The cone of uncertainty has become a pervasive way to visualize hurricane 
paths, however the graphics can be misleading and often fail to convey the 
uncertainty involved in weather forecasting. Liu et al. (2015) point out that the 
width of the cone is often misread as indicating an increase in the storm’s size . 
This misinterpretation is understandable. The graphic shows a stagnant image, 
often with solid coloring that gives no indication of a change in confidence 
or certainty. Instead it appears the storm is going to grow larger as it moves 
over a specific path. 

Furthermore, the design of the cone of uncertainty can provide a false 
sense of certainty for those inside and outside of the projected path. People 
who rely on the cone to make decisions about evacuating can misinterpret 
the confidence involved in the graphic, leading to poor decisions. People who 

Sat Early AM
120 mph

Fri Early AM
125 mph

Thu Early AM
130 mph

Wed Early AM
140 mph

Tue Early AM
120 mph

Figure 14: Cone of 

Uncertainty (Right) Uses 

an expanding cone to 

visualize the uncertainty in 

a projection.
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live outside of the cone may interpret the graphic as meaning a hurricane will 
not affect them, when in reality a hurricane can have impact for miles beyond 
its path (Liu et al., 2015).

The cone of uncertainty attempts to visualize a complicated forecast that 
spans a time period in a single stagnant visualization. Incorporating a time 
based visualization could give a user understanding of the changing certainty 
of a projection over time. The visualization also does not facilitate important 
time and location specific queries. Instead of giving the user the ability to 
determine the likelihood that the storm will hit her area at a specific time, it 
shows a broad general overview that does little to facilitate individual decision 
making (Liu et al., 2015).

The New York Times’ Exit Polls Needle

The New York Times used a set of two moving needles to track the results of the 
2016 presidential election and the Alabama Senate race. The representations 
were both incredibly popular and divisive. The needle made its debut during 
the 2016 Presidential Election and its inaccuracy led to much criticism and 
derision online (Wartik, 2017). During the Alabama Senate race, The Times’ 
live results election page received more than 13 million page views, making 
it among their most-read pieces of 2017, and #NYTNeedle was trending on 
Twitter (Wartik, 2017). The New York Times’ graphics department used the 
needle to visualize the uncertainty involved in an election and give users 
a more “visceral understanding” of the error involved in making election 
predictions (Wartik, 2017).

The needle interface is comprised of two displays (Figure 15); one that 
represents the estimated margin of victory for a candidate, and the other 
that represents the Times’ confidence in their prediction, or the chance of a 
particular candidate winning. The margin display uses a swinging needle graphic 
to point to a particular point on a wheel, while the wheel itself is colored to 
indicate how confident that prediction is and within what range. Over the 
course of election night, the size of the range on the estimated margin needle 
display grew smaller, while the position on the chance of winning needle 
ventured closer to 100%. These graphics gave users an understanding of how 

Figure 15: The Needle 

(Left) The needle interface 

uses a gauge metaphor 

to convey the uncertainty 

in live election numbers, 

providing the user with an 

experiential visualization.
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confident pollsters were in their predictions and showed how that confidence 
changed as polls closed. 

These graphics are incredibly popular in part because of their simplicity. 
The needle displays use simple language and can be quickly interpreted by 
someone without a great deal of background knowledge. Even if the estimated 
margin was beyond the understanding of a user, the “chance-of-winning” needle 
could provide a quick indication of the certainty or uncertainty involved in 
The Times’ coverage. 

The needle interface itself leveraged user’s analogical reasoning, using 
metaphor to relate the uncertainty in an election to the fluctuating gauges 
on dashboards. Gauges, like speedometers and temperature indicators in cars, 
display fluctuating measurements over time. These gauges swing and move 
as a car moves, just as election predictions change as an evening progresses. 
Similarly, some gauges swing more than others, just as the margin of victory 
may fluctuate more than the chance of winning. The motion of the needle 
interface over time represents both the changing values and the uncertainty 
involved in the information presented. The Times takes this approach a step 
further, using a highlighted range on one of the gauges to indicate uncertainty, 
with the highlighted range growing smaller to indicate a decrease in uncertainty.

The dashboard gauge metaphor works well to display changes in certainty 
and confidence over time. However, the metaphor may not apply to data that 
is not changing as quickly, as the interface would be stagnant and less engaging 
to a user. Needles and gauges are also difficult when comparing two data sets. 
The Times’ needle interface works because the data presented functions as an 
either/or, like a two sided continuum that the needle can swing between, if the 
data set had more possibilities or was not ordered linearly, the needle metaphor 
would be ineffective, as the motion suggests a relation between the data points.

Overall, The New York Times’ election needle provides an easily understandable 
representation of uncertainty for a particular context. The visual itself does 
not draw on complicated statistical terms; instead the user is able to intuitively 
interpret the graphic’s motion as uncertainty, exemplifying an experiential 
visualization. The interface provides enough labeling and information that a 
non-expert user can quickly interpret the information presented, relying only on 
observations. The needle interface suggests that metaphorical visualizations 
can be effective when applied to appropriate contexts. 

Wall Street Journal’s Economic Survey Graphics

The Wall Street Journal conducts a survey on major economic indicators and 
presents its data online for users through an interactive data visualization 
(Figure 16). This visualization uses gray bars to display the actual economic 
indicator, once it has been released by the government, and red lines to display 
the average of their survey’s predictions. The red lines show the average 
prediction and then indicate any outliers with lighter bars. While the graphic 
provides a quick read, it is difficult to interpret the information as presented. It 
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is not clear whether the solid lines are an average or some other measurement, 
or how many participating firms are making a particular prediction. The graphic 
attempts to suggest some of the uncertainty involved in their survey, but the 
result functions like a scatter plot combined with a bar graph, with the bars 
indicating known values and the lines indicating predictions. This approach 
suggests that the graphic is for a quick view, rather than in-depth exploration.

The Wall Street Journal’s graphic may fall short at visualizing uncertainty, 
but it does give the user a great deal of control over the information she see. 
The graphic provides filters that allow a user to toggle between the actual 
values and estimates and determine how many predictions she wants to see. 
These filters give a user control and guide their endogenous attention, allowing 
a user to tailor the interface to her own needs, thereby drawing her in and 
personalizing the tool.

VISUALIZING UNCERTAINTY IN A GRADUATE  
GRAPHIC DESIGN STUDIO

While completing my own research and design studies, a group of graduate 
students in a first year foundations Master of Graphic Design course, taught 
by Dr. Matthew Peterson at North Carolina State University, created their own 
studies on visualizing uncertainty. I had the opportunity to prepare the source 
material for Dr. Peterson’s course and thus align it to this investigation. These 
designers prototyped data visualizations for news platforms that conveyed 
some form of uncertainty to a non-expert adult audience. 

Each designer worked with one polling data set and visualization from 
a major news organization, specifically FiveThirtyEight, The New York Times, 
The Washington Post, and CNN. The data sets were:

President Trump’s Popularity (FiveThirtyEight)

Figure 16: Economic Survey 

Graphic (Left) The Wall 

Street Journal’s conveys the 

uncertainty in their survey 

by contrasting gray bars  

with red lines.
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Projections for the Virginia Governor’s Race (The New York Times)

Poll on US Withdraw from Paris Climate Agreement (The Washington 
Post)

President Trump’s Approval Rating by Party (CNN)

The final visualizations used a variety of methods, including motion, 
interactivity, and variations on traditional visualizations, to convey uncertainty.

Motion

Several designers explored motion as a means of conveying uncertainty. For 
example, Matthew Norton, animated a data set’s margin of error so that a user 
can see all the possible outcomes suggested by the data. The visualization 
uses a simple part-to-whole graphic, but the parts grow and shrink over time 
to suggest a range (Figure 17). The motion draws the user in, attracting their 

exogenous attention. By using colors associated with the two major U.S. 
political parties (red for Republican, blue for Democrat), the user can quickly 
associate the two blocks with the parties they represent. The coloring and 
layout also aid in chunking information together and drawing out the different 
categories of information.

While Norton’s visualization uses a growth motion to convey the margin 
of error, visualizations could use more random, or glitched, animations to 
suggest even more uncertainty in a data set. Less uniform animations would 
both draw in a user’s attention and work to metaphorically convey uncertainty.

Visualizations like Norton’s suggest that motion can convey uncertainty 
quickly. By incorporating animation into familiar layouts and forms, a designer 
can create visualizations of uncertainty that a user can easily interpret.

Norton’s studies suggest that specific statistical information, like margin of 
error, or specific types of uncertainty may lend themselves to simple animations 
more than others. A range of possibilities is a relatively easy concept for a 
user to understand, while uncertainty coming from a more abstract source, 

Figure 17: Visualization by 

Matthew Norton (Right)

Based on President Trump’s 

Approval Rating by Party 

(CNN). The visualization 

shows the margin of error 

for the data set through 

a growing animation, 

storyboarded here.

See the animation at:

https://college.design.

ncsu.edu/thenfinally/hill/

disapprove_cc_titles.gif

https://college.design.ncsu.edu/thenfinally/hill/disapprove_cc_titles.gif
https://college.design.ncsu.edu/thenfinally/hill/disapprove_cc_titles.gif
https://college.design.ncsu.edu/thenfinally/hill/disapprove_cc_titles.gif
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like inference or precision error, might be more difficult to convey quickly 
via animation. The studies also reinforce the importance of building off of a 
user’s existing mental models. Maintaining traditional political color schemes 
made the visualizations easier to interpret and relate the information to a 
political race.

Interactivity

Interactivity played a major role in many of the visualizations produced. Several 
designers used interactive filters and rollover features to convey uncertainty 
in data, drawing in the user’s endogenous attention and adding more layers 
of information to otherwise traditional layouts. 

One designer divided donut chart based on the sample size to give users 
information about weighting in sampling (Figure 18). By providing information 
about the type of person polled, a user is given information about the statistical 
processes behind a polling projection, as well as the human side of the numbers. 
The circle, however, is not divided equally, as each section has a different area. 
Exaggerating the area differences could suggest the different weights given 
to individuals. The design itself sticks to a traditional political color scheme, 
making the light blue moments stand out more and drawing in a user’s 
exogenous attention and chunking the different pieces of information together. 

These visualization techniques could be pushed further, with the 
interactive feature including more of the process behind the projections with 
rollovers and filters that a user can explore on their own, or ignore. 

Figure 18: Visualization 

by A. Anderson (Right) 

Based on Projections for 

the Virginia Governor’s 

Race (The New York Times). 

Anderson’s visualization 

shows the weighting given 

to different respondents in 

the final poll numbers.
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Variations on Traditional Visualization Formats

Many of the visualizations created for this project began with traditional 
visualization techniques, such as scatter plots, bar graphs, and pie charts. 
Several designers explored ways to convey uncertainty in data by modifying 
the traditional format visually, rather than by adding motion or interactivity. 

For example, Katie Frohbose started with a traditional scatter plot to display 
polling data from numerous sources and she then used opacity to darken areas 
of overlap, thereby calling out those areas as more certain than those with 
less consensus among polls (Figure 19).

This variation on a scatter plot gives the user a better sense of how to 
interact with conflicting data sets, or disagreement uncertainty. A non-expert 
user, however, may have trouble interpreting what these areas of overlap 
mean. Any user would need more visual cues and labels to fully understand 
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Figures 19: Visualization 

by K. Frohbose (Left) 

Based on President 

Trump’s Popularity Poll 

(FiveThirtyEight). The 

visualization conveys 

disagreement uncertainty 

by highlighting areas of 

overlap between two 

different polls on the  

same topic.
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what information is presented in these graphics. Furthermore, a designer 
would have to provide more labels and embedded cues to allow a user to fully 
interpret this variation of a scatter plot. These labels could be incorporated 
through interaction, which would attract a user’s endogenous attention and 
allow individual exploration. The removal of non-overlapping areas could 
also be animated to convey the relationship between the two different charts, 
with the visualization highlighting certain moments and removing less certain 
pieces of information.

Visualizations like Frohbose’s suggest that traditional structures could be 
modified visually and structurally to include representations of uncertainty. 
However, a designer must consider how a non-expert user would interpret 
those changes and provide visual cues to aid in understanding.

Conclusions

Reflecting on the visualizations produced in this studio, I realized that 
representations of uncertainty need to build on a user’s existing knowledge. 
As a user I found that the simpler or more subtle the intervention the easier 
it was to interpret the uncertain elements. The visualizations that maintained 
familiar color schemes were also easier to interpret than ones that totally 
redesigned the style of political visualizations. 
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INITIAL EXPLORATIONS

In order to better understand the visual language of data visualization and its 
relationship with uncertainty, I began to iterate on different ways to visualize 
uncertainty in a single data set (Figure 20). These studies did not operate 
within my conceptual framework; instead, they were an exercise in iteration 
and reflection to prepare myself for future studies. I saw these studies as a way 
of getting the more obvious forms out of the way and a means of developing 
potential frameworks. In making quick, iterative studies, I saw the need for 
a framework that both grounded my work in user needs and pushed me to 
consider multiple types of interventions.

I began with unemployment data from The Wall Street Journal’s monthly 
economic survey. The data set contained unemployment projections from 75 
major firms, so I chose to focus on the disagreement uncertainty involved in 
visualizing projections from 75 different sources. My initial variations drew 
on existing visualization techniques, looking for ways that I could change the 
structure or layout of these visualizations to convey uncertainty. After iterating 
on several different visualization techniques, I focused on bar graphs and created 
iterations that modified bar graphs to include representations of uncertainty. 

These visualizations, however, relied heavily on statistical elements like 
mean lines and quartile ranges to depict uncertainty, which might prove difficult 
for a non-expert to understand. I found that the simpler the visualization, the 
easier it was to discern elements of uncertainty. Visual techniques like blur 
added an element of uncertainty, but blur is difficult to quantify, so it limits 
the usability of the visualization (Figure 21).

Figure 20: Initial Studies 

(Left) These studies 

focused on one data set 

and iterating through 

different possibilities for 

visualizing uncertainty.
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Reflecting on these visualizations, I found that displaying multiple data 
points rather than ranges or means gave a greater impression of uncertainty. 
These visualizations allow the user to see the contradictions or points of 
contention in a data set, and show how much consensus there is about a mean 
value, and how that consensus changes over time (Figure 22). 

All of these initial studies are static graphics, with no interaction or motion. 
While creating them, I saw opportunities for interactive labels and tags or 
motion to increase the user’s understanding of the uncertainty conveyed and 
make graphics easier to understand. For example, the graphic in figure 23 does 
not convey much more than a part to whole relationship as a static graphic, 
but if it was animated or interactive, a user could compare differences in each 
projection through actual parts-to-wholes, rather than percentages.

In reflecting on these initial studies and the work done in the graduate 
studio, I determined that interaction and motion will do more to depict 
uncertainty than totally new formats. Existing visualization structures are 
easier for a user to work with because users already have mental models 

Figure 21: Blurred Bar 

Graph (Right) The color 

scale shows the number 

of projections at each 

value. The blurr increases 

the user’s feeling of 

uncertainty, but  is difficult 

to quantify.
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for interpreting them. If uncertainty can be incorporated into these formats 
without drastically challenging existing mental models, users should have an 
easier time working with the visualizations. 

Neither the visualizations created in the graduate studio nor my initial 
studies dealt with pictorial or metaphorical methods for visualization. 
Visualizations that draw on illustration more than statistical visual languages 
have the potential to draw on a user’s analogical reasoning processes and depict 
uncertainty outside of traditional charts and graphs.

Figure 23: Part-to-whole 

Visualization (Below) If 

this visualization was one 

frame of an animation, it 

could convey the different 

projections as parts-to-

wholes.
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Inference 
Uncertainty

Disagreement
 Uncertainty

Completeness 
Uncertainty

Precision 
Uncertainty

Capture Exogenous 
Attention

Study 1A :  
Rising Water

Study 1B:  
Expert Projections

Study 1C:  
Bouncing Polls

Study 1D:  
Constant Motion

Guide Endogenous 
Attention

Study 2A:  
Taking Control

Study 2B:  
Hurricane Heat Map

Study 2C:  
Comparing Polls

Study 2D:  
Finding Agreement

Facilitate Chunking
Study 3A:  

A Bite Out of Unemployment
Study 3D:  

Blurring Bars

Aid Reasoning With Mental 
Models and Analogies

Study 4B:  
Hurricane Dashbaord

Study 4C:  
Adding to the Scale

Study 4D:  
Taking the Temperature of 

the Electorate
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Visual 
Explorations

To explore methods for conveying 
uncertainty, I created a series of 
visual explorations, or studies, 
guided and constrained by my 
conceptual matrix. Each study 
set explores one of Patterson 
et al.’s leverage points for data 
visualizations, as well as the  
four types of uncertainty. 

The task analyses for these studies 
can be found in the appendix.

Table 3: Studies Matrix
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Study Set 1: Capture Exogenous Attention

In order to capture exogenous attention, Patterson et al. suggest designers 
use elements like color and texture to highlight specific elements, or 
motion to indicate a change in relationship between objects (2014). 
Building off of these leverage points, I created a series of studies that 
explored how capturing exogenous attention could be used to indicate 
uncertainty in a data set.

Study 1A: Rising Water (Inference)
Study 1B: Expert Projections (Disagreement)
Study 1C: Bouncing Polls (Completeness)
Study 1D: Constant Motion (Precision)
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Scenario

Alan moved from Colorado to Florida just in time for 
hurricane season. All of the news he sees is about Hurricane 
Irma and her path, which may or may not include his new 
home in the next week, though he’s not really sure what all 
that means. Everyone he talks to has another opinion on  
the impending storm, and Alan isn’t really sure what he 
should do.

Alan is looking at news articles about Hurricane Irma online 
when he comes across an article on the projected storm 
surge. It includes a graphic that shows a scale of storm surge 
and a moving water level, going from under five feet to twelve 
feet, just like the projection listed in the article (2–12 feet). 
The scale includes information about what each of those 
surge levels can mean. Alan realizes that the forecasters are 
making a rather wide prediction, but that roads in his area 
are going to be dangerous at either end of the projection. 
He starts thinking about evacuating, or at least stocking up 
on food and supplies, as he believes he will most likely be 
stuck in his house for some time. The graphic, in some ways, 
explains the conflicting advice he’s been receiving from 
friends and neighbors—a lot of things could happen with the 
storm in the next few days.

Study 1A: Rising Water
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For inference uncertainty, I 
worked with information on 
Hurricane Irma’s projected path 
and impact on Florida, specifically 
storm surge forecasts. Hurricanes 
push water on shore at levels far 
above regular tides, swallowing 
beaches and structures in storm 
surges that can cause devastating 
damage; however, the concept  
is often misunderstood  
(Andone, 2018). 

I developed a scenario of 
someone new to a hurricane 
prone area who is not familiar 
with hurricane forecasts. My user 
is confused about what to do and 
what the forecasts he views mean 
to him personally. 

The task analysis revealed 
moments of precision and 
inference that come from my 
user’s interactions with the 
graphics. Exogenous attention, 
by definition, deals with a user’s 
initial impressions, so the motion 
has to convey uncertainty through 
a quick initial impression, making 
the task of interpreting the 
graphic rather rapid.

To represent storm surge, and 
the inferences that accompany it,  
I wanted a scale that dealt with 
the impact of the surge itself. 
Including impact makes the 
scale more useful to non-experts 
and provides information for 
decision making. I was surprised 
and frustrated to find that most 
scales do not include storm surge, 
and those that do so use words 
like catastrophic, extreme, and 

extensive for the levels of the 
scale (Storm Surge Overview). 
How does someone differentiate 
between those three different 
levels? Is the scale supposed to 
make anyone who sees it terrified 
of anything above minimal? 
Reading more, I found that even 
minimal storm surge can destroy 
mobile homes and make roads 
impassable, which wouldn’t sound 
like minimal damage to someone 
who lives in a mobile home 
(National Hurricane Center).

In creating these graphics, I 
used water as a visual metaphor 
for the uncertainty represented. 
The graphic uses a rising and 
lowering water level to represent 
the uncertainty in the projected 
storm surge and indicate the 
range of the prediction. My initial 
design incorporated a house in 
the scale as a means of further 
relating the graphic to storm surge 
and the damage that it causes 
(Figure 24). Including the house, 
however, changes the perception 
of the graphic. The water appears 
to be filling up the house, rather 
than more abstractly indicating 
uncertainty. The water and 
house combination pushes the 
graphic too close to the literal, 
rather than the metaphorical. 
Perceptually, it appears less 
uncertain and more like a space 
filling up with water. The use of 
moving water as a metaphor for 
the uncertainty involved in storm 
surge projections has the potential 
to confuse the user, since water 

Study 1A: Rising Water Inference Uncertainty

Figure 24: Rising Water Initial Iteration (Above) 

The initial design incorporated a house in the 

scale as a means of further relating the graphic 

to storm surge and the damage that it causes, 

however, the metaphor is so closely related to 

the subject that it could be misunderstood.

is already involved. Removing 
the literal figures of houses and 
replacing it with the scale renders 
the graphic more metaphorical 
and less literal, giving it some 
power to convey uncertainty 
(Figure 25). 

I also created a version of 
this graphic that includes a 
representation of Miami behind 
the scale (Figure 26). This graphic 
is similar to my first iteration, 
in that it is open to a very literal 
interpretation. Perhaps if the 
concept being conveyed was 
totally unrelated to water, the 
graphic would do more to convey 
the uncertainty involved.

Exogenous Attention × Inference Uncertainty
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Figure 25: Rising Water 1 

(Right) The second version of 

this graphic uses a perspective 

view of Miami and has similar 

issues to the initial house 

iteration. 

See the animation at:

https://college.design.

ncsu.edu/thenfinally/hill/

risingwater-1.gif

Study 1A: Rising Water

https://college.design.ncsu.edu/thenfinally/hill/risingwater-1.gif
https://college.design.ncsu.edu/thenfinally/hill/risingwater-1.gif
https://college.design.ncsu.edu/thenfinally/hill/risingwater-1.gif


53

Studies

Figure 26: Rising Water 2 

(Left) This iteration 

incorporates the Miami skyline 

with the rising water. It can 

also be seen as too literal  

or misinterpreted.

See the animation at:

https://college.design.

ncsu.edu/thenfinally/hill/

risingwater-2.gif

Exogenous Attention × Inference Uncertainty

https://college.design.ncsu.edu/thenfinally/hill/risingwater-2.gif
https://college.design.ncsu.edu/thenfinally/hill/risingwater-2.gif
https://college.design.ncsu.edu/thenfinally/hill/risingwater-2.gif


Scenario

Casey is about to finish graduate school and is looking for 
jobs. Lately, she’s been wondering about what the economy 
and job market are like—she’s been absent from the market 
for a couple years and doesn’t really know what she’s about 
to move into.

Casey checks out a business-oriented newspaper and  
sees a moving graphic of unemployment numbers. It includes 
the names of a bunch of different companies and a chart  
that looks something like a bar graph. Over time, the different 
names are highlighted and corresponding bars on the graph 
turn yellow. Casey watches it for a while, trying to interpret 
the meaning. She has to refer to the caption to understand 
that the yellow indicates each firm’s unemployment 
projection. Once she has that knowledge, she notices that  
the projections are pretty varied, especially the further  
away the date is.

 Casey still isn’t sure what this means for her. She comes 
away from the graphic thinking that the economy is a tough 
thing to pin down, but doesn’t really understand what a value 
like 4% unemployment means in her case—is that high or 
low? She realizes that she needs to do more research to  
really understand what’s going on and what kind of job 
market she’s facing.

Study 1B: Expert Projections
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The Wall Street Journal’s economic 
survey takes projections from 
75 major US firms on economic 
topics like the unemployment 
rate. The conflict between 
these projections provides 
an opportunity to visualize 
disagreement among projections.

I built this study off of one 
of my initial studies, which 
used layers of transparent 
bars to indicate agreement or 
disagreement among projections 
(Figure 27). The visualization 
shows all of the different 
projections while maintaining  
a relatively simple structure.

I worked with a scenario and 
task analysis for a user, Casey, 
who has a personal interest in 
unemployment numbers. Working 
through Casey’s task analysis, I 
found that while the data included 
disagreement uncertainty, it 
really did not relate to her life in 
a meaningful or important way. 
How does a percentage relate 
to an individual’s job search? 
The data itself lacks meaningful 
context for a non-expert user. 
So, while the graphic may convey 
uncertainty, it falls short on really 

engaging with a non-expert user.
In developing the study, I 

animated each projection so that 
the visualization showed how 
projections stacked up on top 
of each other and changed the 
visualization’s appearance. My 
initial study added data points 
one at a time on top of each other, 
with the organization name at 
the top (Figure 28). While the 
graphic shows the progression 
of projections, the nature of 
the motion I created suggests 
that they build on top of each 
other or have some time-based 
relationship, rather than having 
equal weight and no substantial 
relationships between projections. 

For my second iteration, I 
started with the visualization fully 
formed, rather than animating its 
creation (Figure 29). This change 
eliminated the feeling of growth or 
progression and gave the motion 
from one projection to another 
a more random feel. I chose a 
bright yellow to highlight both the 
name of the organization making 
a projection and the projection 
itself. The yellow stands out 
sharply from the black and 
gray colors of the visualization 
and further draws in the user’s 
exogenous attention. 

In this study, each projection is 
given equal time in the animation. 
In a different scenario, where 
the projections are weighted 
or of varying credibility, the 
timing of the animation could 
be altered to give specific frames 

Study 1B: Expert Projections Disagreement Uncertainty

Figure 27: Initial Study (Above) This study 

was based off of an earlier iteration that used 

transparent layers to show different projections.

longer or shorter durations in the 
animation, using duration as a 
variable to create the visualization. 

If this technique were to be 
used in a published visualization, 
a pause button or interactive 
features could be incorporated, 
allowing the user to control 
the timing and the information 
presented. These techniques 
would move beyond engaging 
exogenous attention and into 
other cognitive processes. 

In creating visualizations 
for non-experts, designers must 
recognize the context and the 
relatability of data sets. A value 
like the unemployment rate is 
challenging for a non-expert 
to comprehend without some 
relatable context. Designers must 
also consider how different builds 
and sequencing can change the 
interpretation of motion. Objects 
slowly growing or building on top 
of each other may convey growth, 
rather than simply uncertainty. 
Overall, I believe that both 
context and the nature of motion 
are important to consider in 
any visualization, not just when 
conveying uncertainty.

Exogenous Attention × Disagreement Uncertainty
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Figure 28: Expert Projections 

(Right) The motion in this 

initial study suggested growth 

or an ordered relationship 

between elements, rather than 

disagreement. 

See the animation at:

https://college.design.

ncsu.edu/thenfinally/hill/

expertprojections-1.gif

Study 1B: Expert Projections
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Figure 29: Expert Projections 2 

(Left) The second iteration 

eliminated the feeling of 

growth by highlighting 

projectionss, rather than 

building in order.

See the animation at:

https://college.design.

ncsu.edu/thenfinally/hill/

expertprojections-2.gif

Exogenous Attention × Disagreement Uncertainty

https://college.design.ncsu.edu/thenfinally/hill/expertprojections-2.gif
https://college.design.ncsu.edu/thenfinally/hill/expertprojections-2.gif
https://college.design.ncsu.edu/thenfinally/hill/expertprojections-2.gif


Scenario

Alison is in her early twenties and has just started living on 
her own. She has recently developed a budding interest in 
politics, something her parents rarely talked about and that 
she grew up mostly ignoring. This interest has her exploring 
new media sources and seeking information about the 
upcoming election. One afternoon, she sees an article on 
polls for the election. It includes a graphic of moving balls  
and counters for each candidate, as well as the total number 
of voters in the United States. Alison is struck by the 
relatively small size of the sample in comparison to how  
many people can vote.

She watches as the balls bounce around and move from 
candidate to candidate, with the counters changing by whole 
percentage points because one or two balls bounce across 
the screen. Alison realizes that the poll doesn’t really reflect 
the entire population. She wonders what happens if a couple 
people in the poll lie, could it throw the whole prediction off? 
She reads through the rest of the article, which addresses 
implications of their projection, but considers it all very 
carefully. It’s all conjecture, she realizes. She finishes the 
article feeling like polls aren’t worth much. She decides that 
she can mostly ignore them. She should vote based on her 
opinions, not what the polls say.

Study 1C: Bouncing Polls
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Completeness uncertainty 
concerns the degree to which 
sampling represents a population. 
To convey completeness 
uncertainty through a user’s 
exogenous attention, I worked 
with polls from the 2016 election. 
These polls make projections for 
who will win an election with 
hundreds of millions of voters 
based on relatively minuscule 
samples, generally around 1000 
participants (Goldmacher, 2016). 

My scenario describes Alison, 
a twenty-something with little 
political knowledge but a budding 
interest in the subject. Using the 
task analysis to walk through 
her interactions with the graphic 
reveals the power of motion  
and of contrasting the size of  
a poll with the overall size  
of a population.

The graphic represents the 
people sampled by a given poll 
(Figure 30). It begins with the first 
poll of the election cycle, which 
determines the color of each 
ball. The graphic then animates 
through the polls leading up to 
the election, showing changes in 
the poll projections, as well as 
time to the election. The balls stay 
their initial color, but reposition 
to indicate the changes that have 
been made over time as well as the 
progression of an election style. 

Throughout the whole 
animation, the user is reminded 
of the total possible number of 
voters, which contrasts with the 
degree to which a few changes  

in the sample can impact a  
polling projection. 

The graphic includes play  
and pause controls, allowing the 
user to pause on polling moments 
and explore the data through 
cursor rollovers. A user can see 
the pollster’s grade or relevant 
details that impact the reliability 
of a poll, e.g., if the sample 
includes all voters, registered 
voters, or likely voters. 

This graphic demonstrates 
how a simple and familiar motion 
can indicate uncertainty. Bouncing 
balls are a familiar metaphor 
for randomness and change, 
which when applied to polling 
numbers can convey uncertainty. 
Furthermore, relating the poll 
to the overall number increases 
the contrast between sample and 
population. Highlighting this gap 
in a poll graphic gives the user a 
better understanding of polls as an 
inference and a tool, rather than 
as all knowing forecasts.

Study 1C: Bouncing Polls Completeness Uncertainty

Exogenous Attention × Completeness Uncertainty
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Figure 30: Bouncing Polls 

(Right) The graphic uses 

bouncing balls to represent 

the uncertainty involved in the 

relationship between a poll and 

the total population.

See the animation at:

https://college.design.ncsu.

edu/thenfinally/hill/ 

bouncing.gif

Study 1C: Bouncing Polls

https://college.design.ncsu.edu/thenfinally/hill/ bouncing.gif
https://college.design.ncsu.edu/thenfinally/hill/ bouncing.gif
https://college.design.ncsu.edu/thenfinally/hill/ bouncing.gif
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Exogenous Attention × Completeness Uncertainty



Scenario

Irene likes to read political articles during breaks at work. 
One day she’s drawn in by an animated graphic in an article 
about Trump’s approval rating. The graphic’s motion captures 
her attention. After examining it for a while, she notices that 
it consists of two moving lines that represent approval and 
disapproval. Both lines have a glowing background behind 
them.

 Irene interprets the motion to suggest change and 
uncertainty. She realizes that the approval ratings fall in a 
range, rather than at a specific point. The changes give Irene 
the impression that the actual numbers aren’t that precise. 
However, Irene isn’t really able to make a stable interpretation 
of the graphic as a whole. Instead she comes away feeling 
like the numbers are constantly in motion and unsettled. She 
intuits that disapproval seems higher than approval, but she 
isn’t sure by how much. The entire interaction makes her 
wonder how precise any of these things actually are.

Study 1D: Constant Motion
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For my final exploration into 
capturing a user’s exogenous 
attention, I created a graphic that 
pushes motion to an extreme and 
makes it difficult for the user to 
pick out one particular value or 
data point. The study visualizes 
data on President Trump’s 
approval rating, which changes 
from day to day, but generally 
within a somewhat narrow range. 

The scenario and task analysis 
follow a user who is interested in 
politics and used to viewing polls.

For this study, I decided to 
stay with a traditional line graph 
format and use motion to capture 
the user’s exogenous attention 
and relate a feeling of uncertainty. 
This study was an exploration 
into the power of motion and 
how constant motion could push 
uncertainty and still convey 
information.

The final graphic displays two 
moving lines in a traditional line 
graph format, however, the lines 
animate and move within the 
calculated range of uncertainty 
and carry their labels with them 
(Figure 31). The constant motion 
makes it difficult for a user to 
properly read individual points 
or values. Instead, the user is 
forced to make generalized 
interpretations. 

The animation also 
incorporates  a glitch element 
that adds to the feeling of 
uncertainty. Every few frames 
a line scratches across the 
numbers, suggesting a glitch or 

change in the values and pushing 
the user’s feeling of uncertainty. 

This kind of motion could be 
useful in representing imprecise 
or changing data. The motion 
forces generalized interpretations, 
rather than allowing a user to 
quantify specific values, leaving 
an impression of uncertainty, but 
also providing a rough forecast, 
which could prevent a user from 
feeling misled or misinformed.

Study 1D: Constant Motion Precision Uncertainty

Exogenous Attention × Precision Uncertainty
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Figure 31: Constant Motion 

(Right) The graphic explores 

how constant motion can 

impact a user’s interpretations. 

It incorporates a glitch element 

as well as blur into a moving 

line graph.

See the animation at:

https://college.design.ncsu.

edu/thenfinally/hill/motion.gif

Study 1D: Constant Motion

https://college.design.ncsu.edu/thenfinally/hill/motion.gif
https://college.design.ncsu.edu/thenfinally/hill/motion.gif
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Exogenous Attention: Outcomes

Motion

Simple motions can experientially 
convey uncertainty to a user. 
Graphic elements that move 
in familiar ways both capture 
a user’s exogenous attention 
and metaphorically express 
uncertainty. For example, a 
back and forth motion suggests 
indecision, while the bouncing 
of numerous objects suggests 
randomness. Designers can also 
push the limits of motion and 
challenge a user’s ability to latch 
onto concrete data points. Instead, 
constant motion forces a user to 
make broad generalizations. 

While motion can be read 
intuitively, designers must 
consider the connotations 
involved in a specific animation 
or sequence. Objects growing or 
changing in a progression can 
suggest growth or an ordered 
relationship (See Study 1B, 
Figure 28), while the relationship 
between a moving object and 
its surroundings can suggest 
literal rather than metaphorical 
interpretations (see Study 1A, 
Figures 25 and 26). 

Relatable Contexts

In designing for a non-expert 
audience, designers must 
consider how a user will relate to 
the information being conveyed. 
Often times statistical measures 
are so abstracted from the initial 
phenomenon they represent 
that a non-expert user cannot 
relate to their meaning (see 
Study 1B). Designers must 
find opportunities to render 
information useful and relatable 
to a user.

Capturing Exogenous Attention Outcomes



Study Set 2: Guide Endogenous Attention

Patterson et al. (2014) define exogenous attention as active attention 
and suggest providing interaction options that give a user control over 
an interface and minimize distracting information. To explore how 
endogenous attention could express uncertainty, I created four studies 
that explored how to convey different types of uncertainty through 
various interactions and interface options.

Study 2A: Taking Control(Inference)
Study 2B: Hurricane Heat Map (Disagreement)
Study 2C: Comparing Polls (Completeness)
Study 2D: Finding Agreement (Precision)
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Scenario

Anne’s view of the world is shaped by the news she 
consumes. She tends to stick to the same sources and 
believes them without questioning. One afternoon, a 
colleague sends her a link to an article and graphic on 
President Trump’s approval rating. Anne generally does not 
read news from this website, as it doesn’t fit into her general 
world view, but she likes this colleague and skims the article. 
When she gets to the graphic, she’s drawn in by the contrast 
of the text and the bright colors. The interactive features 
hold her attention and encourage her to explore the different 
steps taken to generate the articles numbers. 

Interacting with the graph, Anne is able to track how the 
numerous polls involved in the article were analyzed and 
manipulated. She now understands that there’s a great deal 
of manipulation behind the polls’ numbers. She feels that 
the article’s writers are being upfront about their inferences 
and work—something she appreciates. Seeing the work that 
goes into the numbers feels honest and open, as if the article 
is letting her in on a secret. It makes her wonder about the 
articles and polls she generally reads and question how much 
those are manipulated before they reach her. The interaction 
suggests to Anne that she should question what she reads in 
a more serious way, especially when it involves data.

Study 2A: Taking Control
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My first study on guiding 
endogenous attention addressed 
presidential approval polls and 
inference uncertainty. Since 
inference uncertainty deals with 
the analysis and meaning given to 
data, I broke down the statistical 
analysis in order to calculate an 
overall approval and disapproval 
rate. My user scenario and task 
analysis follow a skeptical user 
who normally does not read or 
trust the source of the graphic.

In considering how an 
interface can expose the 
interpretations behind a data 
visualization, the visualization 
format should be familiar to a 
user. A familiar form allows a user 
to recognize changes quickly and 
does require lots of interpretation 
or attention. This study uses a 
line graph and scatter plot display 
and breaks down the process of 
analyzing poll numbers step by 
step (Figure 32).

Next to the graphic is a 
description of the analytical 
process with interactive links. 
As the user reads through the 
paragraph, she can activate the 
links, changing the visualization 
to show how that piece of analysis 
changes the data. 

The user can also subtract 
data points from the trendline 
analysis by hovering over a data 
point and clicking to eliminate it. 
This feature gives the user even 
more power over the analysis, 
letting her tinker with the data to 
find patterns and make inferences 

at her own speed. This feature 
reignites the user’s endogenous 
attention, but for it to really be 
appreciated, a user must dedicate 
a considerable amount  
of attention.

Giving the user control  
over analysis offers her insight 
into what is really going on with 
a forecast or graphic and conveys 
honesty and transparency. This 
study suggests that uncertainty 
and inferences can be conveyed 
by breaking down the analysis 
process and taking the user 
along for the inscription cascade, 
allowing her to see the process  
of translating rough data into  
a forecast.

Study 2A: Taking Control Inference Uncertainty

Endogenous Attention × Inference Uncertainty
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Figure 32: Taking Control 

(Right) In this study, the user 

controlls the analysis process 

and changes the graphic.

See the animation at:

https://college.design.

ncsu.edu/thenfinally/hill/

takingcontrol.gif

Study 2A: Taking Control

https://college.design.ncsu.edu/thenfinally/hill/takingcontrol.gif
https://college.design.ncsu.edu/thenfinally/hill/takingcontrol.gif
https://college.design.ncsu.edu/thenfinally/hill/takingcontrol.gif
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Endogenous Attention × Inference Uncertainty



Scenario

Susan is supposed to visit Miami for work next week, but 
it seems like Hurricane Irma might change her plans. She’s 
seeking out information about the hurricane when she finds a 
graphic on Irma’s impact. 

The graphic allows the user to customize the projections to 
a specific location. Susan enters Miami into the blank and 
the graphic changes, showing a row of colorful squares. The 
grid is broken down by dates along the left side and different 
projections across the top. Susan examines the color scale 
which ranges from no impact to catastrophic. 

Susan plays with the graphic, using the interface options 
to reorganize the boxes and chunk together the colors. She 
switches from wind to storm surge projections and looks at 
specifc days. She realizes that a lot of the projections show 
severe impact on the days she’s supposed to visit Miami. 
After playing with the graphic for a while, Susan decides to 
reschedule her trip.

Study 2B:  Hurricane Heat Map
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In dealing with disagreement 
uncertainty and Hurricane Path 
projections, a graphic must 
show conflicts in projections 
in a way that is relatable and 
immediately understandable. 
This study utilizes a user 
scenario that describes someone, 
Susan, planning for a trip to a 
potentially impacted area. The 
task analysis follows Susan 
through her interactions with the 
graphic and how it both guides 
her endogenous attention and 
chunks information in a way that 
facilitates interpretation. 

This study starts out by 
allowing the user to customize 
it to a specific location. The user 
enters a location to customize 
the interface to her needs. This 
feature gives the user control and 
allows her to tailor the focus of 
the graphic. The information is 
then laid out in a simple grid that 
the user can modify using the 
interface controls (Figure 33). The 
user can switch between different 
kinds of projections (wind speed 
and storm surge) and zoom in on 
specific dates to see a map view. 

The different hurricane 
projection models are laid out in 
an eminently navigable manner, 
where a user can compare 
the projected impacts. After 
encountering a graphic like this 
for several storms, a user might 
intuit which models are more 
reliable, changing her relationship 
with the data.  

This study combined the 
strategies of guiding endogenous 
attention and facilitating 
chunking. By chunking together 
blocks, but giving the user control, 
the interface allows a user to make 
quick inferences and tailor the 
information to personal needs.

From this study, it is clear that 
many of Patterson et al.’s leverage 
points can be combined or coexist 
in a graphic. By combining the 
leverage points, a designer can 
engage more of a user’s cognitive 
processes and strengthen the 
representations of uncertainty.

Study 2B: Hurricane Heat Map Disagreement Uncertainty

Endogenous Attention × Disagreement Uncertainty
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Figure 33: Hurricane Heat Map 

(Right)This graphic combines 

a user’s endogenous attention 

and the chunking of elements. 

The user can customize the 

interface and explore different 

layers of information. 

Study 2B: Hurricane Heat Map
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Endogenous Attention × Disagreement Uncertainty
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Scenario

All of the news Claire sees has her feeling like the Presidential 
election is a done deal. Claire herself is only slightly active 
politically—she holds opinions but rarely acts on them, and 
does not really see a huge reason to vote if everyone already 
knows what is going to happen. One afternoon at work 
she is browsing her favorite news website and stumbles on 
an article about the election that draws from one specific 
poll. She scrolls through the article before stopping on an 
interactive visualization.

 The visualization begins with a representation of the 
200 million registered voters in the United States before 
zooming in to the tiny portion of the population that the poll 
sampled. The scale of the key changes dramatically to reflect 
the change in scale. The graphic then splits to show the 
proportion of the sample that supports each candidate. Claire 
moves the pieces of the sample around to compare sizes. She 
plays with comparing the different samples and then uses 
the key to zoom in and out, toggling from registered voters 
down to the sample size. The graphic also shows how this 
sample size compares to other top polls. After playing with 
the graphic for a minute or two, Claire realizes that all the 
election projections and articles she’s been reading are based 
off of tiny samples. The graphic gives Claire the impression 
that no one really knows what is going to happen in the 
election. This uncertainty scares her and pushes her  
to actually vote.

Study 2C: Comparing Polls
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For the previous exploration 
on completeness uncertainty, I 
looked at capturing exogenous 
attention in a graphic about the 
2016 Presidential election polls. 
I returned to that data set to 
explore how a similar graphic 
could convey completeness 
uncertainty by guiding a user’s 
exogenous attention through an 
interactive graphic that a user can 
explore at her own pace. 

The study utilizes a user 
scenario and task analysis that 
shows how Claire, a semi-
politically active individual, 
interacts with an interface that 
clusters users together  
by candidate.

This study considered how 
allowing a user to explore 
the differences between a 
population and a sample conveys 
completeness uncertainty. 
Presenting the scale differences 
through animation, and then 
allowing the user to move 
things around and play with the 
pieces, exemplifies the minimal 
differences between sampled 
values (Figure 34). The user can 
see how a relatively small number 
of voters can drastically change 
the forecasted percentage.

In this study, the user has 
control and can make inferences 
on her own. She is able to move 
pieces around and compare, 
drawing her own conclusions. 
While this approach leaves 
interpretations up to the user, 
it may not fully convey the 

magnitude of the uncertainty 
involved. The uncertainty exists 
mainly in the motion from 
population to sample. The part-
to-whole comparison shows a 
user the drastic differences in 
scale and leads to questions about 
representativeness and inclusion. 
Should a user ignore that part or 
skip over it, she might miss the 
uncertainty. Breaking poll data 
down into individual participants, 
however, exposes how few people 
participate in a poll, which serves 
to convey uncertainty on its own.

Study 2C: Comparing Polls Completeness Uncertainty

Endogenous Attention × Completeness Uncertainty
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Figure 34: Comparing Polls 

(Right) This study uses 

animations and interactions 

to show a population in 

comparison to a sample.

Study 2C: Comparing Polls
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Scenario

Chris is viewing political articles online when he comes 
across a graphic that explores President Trump’s approval 
rating. The graphic resembles a scatter plot, but its data is 
chunked together in hexagons. In examining the color scales 
and format, Chris realizes that darker sections are moments 
of consensus. He follows the written cues on the graphic 
and rolls over different points. Chris then clicks and drags 
across the graphic, zooming in on a time frame. The graphic 
transitions to a traditional scatter plot, which Chris continues 
to explore.

After a while, Chris gains an understanding of the overall 
trend in approval numbers, but is also left wondering how 
precise the projections he sees are.

Study 2D: Finding Agreement
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In working with precision 
uncertainty and endogenous 
attention, this study examines 
how a graphic can show moments 
of greater precision and guide a 
user through an altered version 
of a traditional format. The user 
scenario and task analysis follow 
Chris through interacting with the 
graphic and drawing his  
own conclusions.

In this study, the graphic 
itself is fairly imprecise. Data 
points that relate to each other 
are chunked using a hexagonal 
grid. This format allows a 
user to see points of greater 
consensus in the data. This study 
combines several parts of my 
framework, including endogenous 
attention, chunking, precision, 
and disagreement uncertainties 
(Figure 35).  The user can use 
sliders to control the precision of 
the graphic and eliminate sections 
of the visualization that portray 
moments of less agreement. These 
threshold values allow a user to 
explore the data at his own pace 
and set his own parameters for 
interacting with the data set.

This study’s interface uses 
rollovers to control information. 
When a user selects a specific 
data point, he is given more 
information about that cluster, 
staggering the flow of information. 
The user then has the power 
to select a range of data points 
by clicking and dragging. This 
allows him to zoom in on the 
information and find concrete 

data points, rather than the less 
precise range of values.

Again, this study demonstrates 
how combining different visual 
techniques can convey uncertainty 
and engage more of a user’s 
cognitive processes. It also shows 
that multiple types of uncertainty 
exist and should be considered in 
every visualization.

Study 2D: Finding Agreement Precision Uncertainty

Endogenous Attention × Precision Uncertainty
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Figure 35: Finding Agreement 

(Right) This visualization 

allows the user to set different 

thresholds for the data and 

explore the information 

through roll overs and zoom.

Study 2D: Finding Agreement
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Exogenous Attention Outcomes

User Control Over Analysis

Giving a user control over the 
analysis behind a visualization 
brings a user closer to the initial 
phenomenon and allows for her 
to see changes and moments 
of inference. Breaking down 
the analysis process gives the 
user opportunities to question 
inferences made in the creation  
of a visualization, such as grading 
or weighting data points (See 
Study 2A). This strategy also 
allows a designer to scaffold 
information, making it easier  
to ignore information she does 
not understand, or to build  
off of initial insights with  
new information.

Relatable Contexts

Allowing a user to tailor the 
context of a visualization, such 
as determining the geographic 
focus of a visualization, gives the 
visualization a more relatable 
context and transforms it into 
a concrete tool (See Study 
2B). Tailoring the information 
into a context that is relevant 
to the user engages the user’s 

endogenous attention and makes 
the visualization more useful in 
general. Visualizations can do this 
by providing opportunities for a 
user to select specific locations, 
thresholds, and time frames. 
Giving a user the power to tailor 
information allows a user to 
make her own interpretations 
and find unique interpretations 
and moments of uncertainty. 
Designers, however, should 
consider how a graphic exists 
without those user inputs and if 
moments of uncertainty are not 
conveyed without customization.

Using Part-to-Whole 
Representations to Convey 
Completeness Uncertainty

Providing the opportunity for  
a user to compare a population 
size to a sample size pushes her  
to question the representativeness 
of that sample. Providing cues 
that force a user to make that 
comparison can experientially 
convey completeness uncertainty 
to a user. Part-to-whole 
arrangements can call out missing 
parts or convey drastic differences 
in scale and are easier for a  
non-expert to understand  
than percentages.

Guide Endogenous Attention Outcomes



Study Set 3: Facilitate Chunking

For my third study, I created visualizations that facilitated chunking, or 
provided strong grouping cues to make it easier for a user to see patterns 
and connections (Patterson et al., 2014). Chunking came up in several 
studies outside of this set, so previous visualizations that fall into other 
studies including studies 1C, 2B, 2C, and 2D.

Study 3A: A Bite Out of Unemployment (Inference)
Facilitating Chunking to Show Disagreement and  
Completeness Uncertainty
Study 3D: Blurring Bars (Precision)
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Scenario

David considers himself informed on current events. He likes 
to read the news during breaks at work. One day he reads 
an article about the current unemployment rate. The article 
includes an animated graphic that catches his attention. It’s a 
quick animation that shows a set of blocks. It then shows the 
percent of that group that’s unemployed, but it moves beyond 
that to show more groups that are excluded, for instance, the 
underemployed and discouraged. The graphic makes it easy 
for David to see part-to-whole comparisons and understand 
the completeness of the number, as well as the inferences 
being made by using the lower number. David is able to 
navigate through the graphic after the initial animation, 
comparing different values and finding his own meaning. 
He leaves the graph doubting the reality unemployment 
numbers, but also feeling more informed about the statistic.

Study 3A: A Bite Out of Unemployment
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My previous studies with 
unemployment numbers were 
difficult for a user to relate to,  
as a result, I wanted to represent 
an aspect of the numbers that 
would be more relatable and 
contextualized for a non-expert 
user. This study focuses on who 
is and is not included in the 
unemployment numbers. The 
study utilized a user scenario  
and task analysis for a user, David,  
who is interested in current events 
but not really in touch with  
what unemployment numbers 
mean or show.

The graphic utilizes a simple 
part-to-whole comparison to show 
how adding different demographic 
groups to the unemployment 
statistic can impact the overall 
rate (Figure 36). The animation 
takes  a user through the 
inferences the analysts made in 
examining the data, a technique 
similar to the design of  Study 
2A, where the user controls the 
visualizations as she reads the 
creator’s inferences. Showing 
the changes the creators of 
visualizations make by adding, 
changing, or excluding data  
helps to convey to a user the  
impact of statistical decisions  
that can bias a visualization or 
introduce uncertainty. 

This visualization is an 
extremely pared down version 
of chunking. More complex 
visualizations could show 
different chunks and their 
impact in a similar part-to-whole 

comparison with varying colors 
or by highlighting parts through 
animation. The visualization 
could also incorporate more user 
controls, allowing the user to 
compare chunk sizes or change 
the size of the whole to see how 
scale impacts the data.

Study 3A: A Bite Out of Unemployment Inference Uncertainty

Facilitate Chunking × Inference Uncertainty
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Figure 36: A Bite out of 

Unemployment (Right) This 

visualization walks the user 

through the inferences made in 

calculating the unemployment 

rate., specifically which 

demographics are included.

Study 3A: A Bite Out of Unemployment

See the animation at:

https://college.design.

ncsu.edu/thenfinally/hill/

biteunemployment.gif

https://college.design.ncsu.edu/thenfinally/hill/biteunemployment.gif
https://college.design.ncsu.edu/thenfinally/hill/biteunemployment.gif
https://college.design.ncsu.edu/thenfinally/hill/biteunemployment.gif
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Several studies from other 
sections of this investigation 
chunk elements together to 
convey disagreement and 
completeness uncertainty. In 
studies 2B and 2D, chunked 
elements reveal conflicts in data 
sets and information (Figures 37 
and 38), while in studies 1C and 
2C, the studies use chunking to 
show part-to-whole comparisons 
and convey sampling issues 
(Figures 39 and 40). These studies 
all group elements by color, 
allowing a user to easily spot 
moments of importance  
or conflict.

Facilitate Chunking Disagreement and Completeness Uncertainty

Facilitate Chunking Disagreement  and Completeness Uncertainty

Figure 37: Hurricane Heat Map (Above) This 

study chunks information to show disagreement 

uncertainty in hurricane models.

Figure 38: Finding Agreement (Right) This study 

chunks elements to show precision uncertainty.

Figure 39: Bouncing Polls (Opposite Top) This 

study chunks information to show sampling 

issues.

Figure 40: Comparing Polls (Opposite Bottom) 

This study allows a user to play with chunked 

elements to convey sampling issues.
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Scenario

Sarah is browsing through the day’s news when she sees 
an article about the unemployment rate. She’s not much 
for economics, but the headline draws her in and she skims 
through. As she’s reading, she’s attracted to a brightly 
colored graphic. The left side of the graphic where the 
current unemployment number sits is clear and crisp, but 
as the graphic gets further away from the present, the bars 
become blurred. The contrast and change allows Sarah 
to quickly relate that blur to a fuzziness about the actual 
number. The average, which is black, contrasts sharply from 
the range in yellow, allowing Sarah to mentally chunk the 
items together and interpret the graph quickly. She interprets 
it as the author or creator being careful; they don’t know 
what’s going to happen in a year or two, so why make a firm 
prediction just to be wrong?

Study 3D: Blurring Bars
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Previous explorations with 
chunking considered how 
grouping elements by color allows 
a user to spot inconsistencies 
and missing pieces. For this final 
study, I explored how blurring 
elements that are otherwise 
identical can lead a user to 
interpret elements as uncertain. 
This study works with The Wall 
Street Journal’s economic survey 
on unemployment numbers, as 
well as a scenario and task analysis 
of someone quickly skimming the 
graphic in a longer article.

The graphic in this study 
shows the average estimate from 
the survey, as well as the range 
of the estimates. The further out 
a projection is from the current 
date, the more blurred the graphic 
element. This is reinforced by 
the growing size of the estimate 
range over time. The color of the 
elements allows a user to chunk 
them together and compare size 
and positioning, while the changes 
in blur suggest changes in the 
certainty of the data. In this case, 
blur is interpreted metaphorically, 
with the user unable to make a 
concrete and firm interpretation  
of the specific value and relating 
that to uncertainty (Figure 41).

Study 3D: Blurring Bars Precision Uncertainty

Facilitate Chunking × Precision Uncertainty

December 2017

3%

4%

5%

6%

June 2018 December 2018 June 2019 December 2019

Projection Date

Average Estimate Estimate Range Blur Indicates ConfidenceCurrent Projection

Figure 41: Blurring Bars (Above) This study uses 

blur to contrast more solid elements and convey 

uncertainty through the differences.
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Facilitate Chunking Outcomes

Using Part-to-Whole 
Comparisons

Grouping elements together 
provides the opportunity to 
convey uncertainty through 
contrasting or missing elements. 
It also allows a user to make 
generalized interpretations based 
on part-to-whole comparisons, 
much in the way a percentage 
value works. Allowing the user to 
reach a generalization on her own, 
however, means she is aware of 
the size of the other part and that 
there is the possibility of  
other outcomes. 

Blur

In visualizations, blur makes it 
difficult for a user to quantify a 
value or give specific meaning to 
an element. It allows a user to 
make generalized interpretations, 
rather than come away with 
concrete values. Blur can be used 
with similar elements to suggest 
that one value is more certain 
than another, or to make a single 
element stand out in contrast. 

Blur acts as a kind of metaphor 
for uncertainty: elements are 
literally fuzzy and challenge a 

user’s ability to quantify data 
points. By blurring objects, a 
designer implies that an object, 
and what it represents,  is 
not solid or fully formed. The 
metaphor is strongest when 
blurred elements are presented 
with sharp or solid ones, making 
the blur noticeable and providing 
contrast. In using it, designers 
must be comfortable with giving 
users a generalized, rather than 
specific, impression of the data. 
Too much blur could potentially 
give a graphic an untrustworthy 
or timid feeling, something a 
designer should keep in mind. 

Pairing blur with an element 
like time (see study 3D) gives it 
a concrete value to fix on and 
allows a user to see changes in 
uncertainty over time (or any 
other value), telling more of  
a story about the data and  
its reliability.

Facilitate Chunking Outcomes



Study Set 4: Mental Models and Analogies

Our mental models and analogies can be powerful tools in reasoning 
through new situations or complicated information. We organize 
information based on mental models, which allow us to access long-
term memory and aid reasoning (Patterson et al., 2014). Structuring 
visualizations through analogies allows us to access these mental models 
and reason with complex information (Patterson et al., 2014). Metaphor 
and analogy provide powerful tools for designers to convey complex ideas 
in simplistic terms. Previous studies on motion and blur have touched  
on metaphor and how it experientially conveys uncertainty, but this 
section deals with broader metaphors that can drive the entire  
structure of a data visualization.

Using Mental Models and Analogies to Reveal Inference Uncertainty
Study 4B: Hurricane Dashboard (Disagreement)
Study 4C: Adding to the Scale (Completeness)
Study 4D: Taking the Temperature of the Electorate (Precision)
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Other studies in this investigation 
utilize analogies to convey 
inference uncertainty. Study 
1A uses a water metaphor to 
convey the different inferences 
surrounding storm surge 
projections (Figure 42). Many 
studies rely heavily on motion, 
in the case of study 1A a wave-
like motion, to convey different 
possibilities. Motion itself acts as a 
kind of metaphor for uncertainty, 
with different motions suggesting 
different meanings. A wave 
suggests motion between two 
points or rising and falling. 

Other motions, like the 
random bouncing motion in  
Study 1C can be used to relate 
inference when combined with 
a specific data set or structure, 
for example, objects could 
bounce from one idea to another 
to convey uncertainty about 
an inference in a simulation or 
other visualization (Figure 43). 
Designers must consider the 
intricate details of a motion 
when creating a visualization as 
inappropriate motions can lead  
to misinterpretation and  
false conclusions.

Blur can also be used to relate 
inference uncertainty, with objects 

relating dubious inferences or 
less certainty blurred more than 
more certainty data points, like 
the progressive blur in Study 3D 
(Figure 44). 

My design explorations suggest 
that designers can use analogies 
to develop new visualization 
structures that convey inferences.

Mental Models and Analogies Inference Uncertainty

Figure 42: Rising Water (Below) The wave 

motion in this study could be used to 

metaphorically convey inference uncertainty.

Mental Models and Analogies: Inference Uncertainty

Figure 43: Bouncing Polls (Opposite Top) The 

bouncing motion from this study could be used 

to convey inference uncertainty..

Figure 44: Blurring Bars (Opposite Bottom) Blur 

can function as a metaphor for uncertainty and 

be used to convey inference uncertainty.



97

Appendix

Mental Models and Analogies × Inference Uncertainty
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Scenario

Ben is supposed to go to Miami next week for work, 
unfortunately, it looks like Hurricane Irma will be visiting then 
too. Ben’s not sure what’s going to happen with the hurricane, 
so he’s seeking out information from online news sources.

One website includes a graphic that looks like a car 
dashboard. Ben stops and examines the graphic. It includes 
a spinning hurricane, a couple of gauges, and a search bar. 
As Ben enters in his information (location, date, etc.), the 
dashboard comes alive and the gauges move, giving him 
information about the hurricane’s path.

Ben examines the interface and sees that it includes a time 
bar. He slides the bar closer to when he’ll be in Miami and 
a transparent version of the hurricane splits into multiple 
hurricanes that slide along the paths. The spinners on the left 
go wild, all moving away from calm towards stronger winds.

Ben clicks on one of the little hurricanes that doesn’t directly 
hit Miami. The other paths and hurricanes fade out, but the 
spinners stay near dangerous wind speeds. Ben continues 
to play with the different paths, watching their impact on 
the spinners and their relationship to Miami. After a while, 
Ben becomes convinced that regardless of the directness of 
the hit Miami receives, he doesn’t want to be anywhere near 
South Florida. 

Study 4B: Hurricane Dashboard
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The New York Times uses a  
needle gauge to convey 
uncertainty in polling projections. 
For my initial study into 
metaphor, I pushed that metaphor 
further, building a whole 
dashboard to convey disagreement 
uncertainty in hurricane path 
projections. The dashboard 
metaphor is so pervasive that 
almost every interface includes 
some sort of dashboard. Users 
encounter real and metaphorical 
dashboards every day, making 
them powerful tools for conveying 
complex information. 

For this study, I worked with 
a scenario and task analysis that 
describes a user trying to make 
a decision about traveling to a 
hurricane prone area. The user, 
Ben, is familiar with the dashboard 
metaphor, making the interface  
easy for him to use and interpret 
(Figure 45). 

In this hurricane forecast, 
the user is interested in how the 
storm will impact him. Designers 
can tailor these visualizations 
to a specific user by including 
customization options, like 
location searches and time sliders. 
This gives the user the power to 
favor impacts that are relevant 
to them. For this study, the 
spinners give a user a sense of the 
impact, but also of confidence. 
The wind speed spinner shows 
impact, and as the dial lingers on 
areas of greater damage, the top 
of the scale lights up, capturing 
the user’s exogenous attention. 

In designing visualizations 
with metaphors, designers can 
incorporate other leverage points, 
like exogenous and endogenous 
attention, to further facilitate 
cognitive processing. 

The dashboard metaphor has 
become so ubiquitous because 
of its simplicity and relatability. 
We read dashboards to gain 
information at a given moment, 
so users expect motion and 
responsiveness. Dashboards can 
incorporate numerous ideas at 
once because users are familiar 
with reading them and are not 
challenged by the structure. 
These qualities make dashboards 
a useful metaphor for conveying 
uncertainty, especially in complex 
situations, and demonstrate 
the benefit of metaphors being 
familiar and relatable. 

Furthermore, the motion of 
the gauges acts as a metaphor 
separate from the dashboard 
itself. As I discussed with  
previous studies, an oscillating 
motion conveys indecision and 
makes it difficult for a user to 
select a specific value. This  
creates an experiential feeling  
of uncertainty. Large scale 
structural metaphors, like 
dashboards, can combine various 
analogies in one visualization, 
furthering reinforcing elements 
that convey uncertainty.

Study 4B: Hurricane Dashboard Disagreement Uncertainty

Mental Models and Analogies × Disagreement Uncertainty



100

Visualizing 
Uncertainty

Figure 45: Hurricane 

Dashboard (Right) The 

visualization uses a familiar 

dashboard structure and 

movement to convey 

disagreement uncertainty.

Study 4B: Hurricane Dashboard

See the animation at:

https://college.design.

ncsu.edu/thenfinally/hill/

dashboard.gif

https://college.design.ncsu.edu/thenfinally/hill/dashboard.gif
https://college.design.ncsu.edu/thenfinally/hill/dashboard.gif
https://college.design.ncsu.edu/thenfinally/hill/dashboard.gif
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Scenario

Lately, Audrey has been hearing how great the US economy 
is doing. She’s bombarded with messages about low 
unemployment and a booming stock market, but this doesn’t 
reflect her life or that of those around her. She’s been working 
part time for months because she can’t find a full-time job. 
She doesn’t understand why everything she hears about jobs 
and unemployment is so positive, when that doesn’t reflect 
her reality. One day, Audrey is torturing herself by reading an 
article on the unemployment rate on a news website. She’s 
really just skimming over the discussion when she comes to a 
strange graphic. In the middle of the article is what looks like 
a scale. To the right are three people with brief descriptions of 
each person’s situation and to the left is a traditional kitchen 
scale with a large dial. Audrey clicks on the first person 
presented, she’s described as jobless and actively looking for 
a new job. When Audrey clicks, the woman moves onto the 
scale and the dial hovers around 4%. The caption on the scale 
reports that this demographic is the only one the government 
uses. Audrey then clicks on the next person, who is described 
as underemployed, or working part time because they can’t 
find a full-time position. When this person is added to the 
scale, the arrow jumps and hovers around 8%.

Audrey is shocked. She realizes she’s been left out of the 
numbers and information she’s seen on unemployment. 
Audrey feels that politicians and those around her have been 
misrepresenting the economy and failing to represent her. 

Study 4C: Adding to the Scale
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In working with unemployment 
numbers and a metaphorical 
display, I used a scenario and task 
analysis for a user, Audrey, who 
is confused by unemployment 
numbers . She is unable to see 
herself or her situation in  
the numbers.

Audrey’s situation calls for 
a representation that highlights 
the human factor of the numbers. 
This exploration uses a scale to 
convey the weight of different 
demographic groups. The 
needle on the scale operates 
experientially. Logic dictates that 
adding more to a scale increases 
the weight. The visualization uses 
this knowledge to convey how 
making the unemployment rate 
represent more demographics 
increases the statistic (Figure 
46). The metaphor also works in 
reverse: removing people from the 
scale decreases the unemployment 
value shown. 

The scale metaphor brings 
the visualization closer to the 
phenomenon. In this case, the 
visualization deals with adding 
and subtracting demographic 
groups from a statistic, just 
as adding items or people to 
a scale can increase the value 
shown. Unlike Study 1A where 
the metaphor is so close to the 
information being represented 
that it makes it too easy for a 
user to interpret the graphic 
literally, this type of metaphorical 
representation is abstracted 
enough to allow a user to make 

inferences about the actual 
statistic without being distracted 
by literal interpretations. This 
suggests that metaphorical 
structures that mimic tools or 
other forms of measurement 
could be useful ways to  
convey uncertainty.

The scale metaphor works 
in much the same way as the 
dashboard or needle metaphor. 
The metaphor is familiar, allowing 
a user to intuit the structure and 
focus on the information being 
visualized. Designers could use a 
similar technique to explain how 
an increase in sample size can 
change values in political  
polling situations. 

Study 4C: Adding to the Scale Completeness Uncertainty

Mental Models and Analogies × Completeness Uncertainty
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Figure 46: Adding to the Scale 

(Right) This visualization 

uses a scale to convey 

completeness uncertainty 

surrounding unemployment 

rates.

See the animation at:

https://college.design.ncsu.

edu/thenfinally/hill/scale.gif

Study 4C: Adding to the Scale

https://college.design.ncsu.edu/thenfinally/hill/scale.gif
https://college.design.ncsu.edu/thenfinally/hill/scale.gif
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Scenario

Arthur is nervous about the upcoming election and has 
been reading every projection he can find. One of his 
favorite sites includes a moving graphic entitled “Taking the 
Temperature of the Popular Vote.” The graphic consists of five 
thermometers with changing readings, displaying changes in 
voter sentiment as well as the current leader. Arthur obsesses 
over it, watching as Trump and Clinton slip in and out of the 
lead. The graphic makes Arthur incredibly nervous, especially 
the motion. Sometimes Clinton has a large lead, sometimes 
she’s narrowly behind Trump. Arthur can’t settle on a single 
idea of the election; he only comes away with a general sense, 
which adds to his anxiety. His uncertainty makes Arthur 
determined to vote and inspires him to annoy his  
friends about voting.

Study 4D: Taking the Temperature of the Electorate
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My final study on mental models 
and analogies uses the 2016 
Presidential election polls data set 
as well as a user scenario and task 
analysis for Arthur, who is already 
nervous about the election.

The study uses thermometers 
as a metaphorical structure for 
a political visualization (Figure 
47). Each candidate has their 
own thermometer which moves 
back and forth, relating the 
different polling projections. 
Like other oscillating motions, it 
conveys uncertainty and makes 
it difficult for a user to settle on 
a specific value. Since several 
thermometers are aligned, it 
conveys a sense of competition 
and acts as a kind of race. While 
the thermometer metaphor 
builds on the colloquial sense of 
the “temperature” of a situation, 
thermometers are usually 
isolated, so the “competitive race” 
between multiple thermometers 
is unexpected and could be 
problematic for that reason

The thermometers function  
like bar graphs, a structure most 
users will understand. A user can 
easily compare multiple bars at 
once and easily see who has a  
lead according to the polls.  
The movement and thermometer 
metaphor add uncertainty to  
that familiar structure, allowing 
the user to see changes and 
suggest imprecision.

The thermometer metaphor is 
simple enough for most users to 
understand intuitively, allowing 

it to include a set of motions and 
still be interpreted rather quickly. 
Other simple tools or gauges, like 
levels, rulers, scales that indicate 
measurements could also provide 
metaphorical structures for 
intuitive visualizations. 

Study 4D: Taking the Temperature of the Electorate Precision Uncertainty

Mental Models and Analogies × Precision Uncertainty
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Figure 47: Taking the 

Temperature of the Electorate 

(Right) This visualization 

uses thermometers to convey 

issues of precision in election 

forecasts.

See the animation at:

https://college.design.

ncsu.edu/thenfinally/hill/

temperature.gif

Study 4D: Taking the Temperature of the Electorate

https://college.design.ncsu.edu/thenfinally/hill/temperature.gif
https://college.design.ncsu.edu/thenfinally/hill/temperature.gif
https://college.design.ncsu.edu/thenfinally/hill/temperature.gif
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Mental Models and Analogies Outcomes

Relatable Contexts and Metaphors

In information visualizations, 
metaphors have to be familiar so 
that a user can interpret them 
quickly and not get distracted. 
Dashboards and tool structures 
work well, as user are accustomed 
to reading them for information. 

Motion

Motion itself acts as a metaphor 
for uncertainty. Designers should 
consider the connotations of 
different kinds of motion and 
how they can add to feelings of 
uncertainty, rather than distract 
a user. Oscillation suggests 
indecision, while a sequence of 
builds or an expanding object can 
suggest growth. 

Mental Models and Analogies Outcomes
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The studies developed for this investigation point to several experiential techniques 
designers can use to convey uncertainty in information visualizations. The 
emergent principles described here represent the most compelling and translatable 
techniques derived from the studies. These principles can lead to techniques not 
realized in this investigation. Designers can use these principles to develop more 
techniques for visualizing uncertainty  or a toolkit for visualizing uncertainty 
in specific contexts through specific motions, metaphors, and visual elements.

MOTION CAN FUNCTION AS A METAPHOR FOR UNCERTAINTY.

Designers can use simple motions to convey uncertainty to a user. Motion 
functions as a type of metaphor, for instance, a back and forth motion is 
analogous to indecision. Designers should consider the connotations of 
different motions and whether the motion relates uncertainty, or is open to 
other interpretations (for example, expanding elements can suggest growth 
rather than change). Visualizations can also push the limits of interpretation 
by challenging a user’s ability to latch onto concrete data points and force a 
user to make broad generalizations.

See study set 1 and studies 4B and 4D.

BLUR CAN ACT AS A STATIC VISUAL METAPHOR FOR UNCERTAINTY.

 Blur makes it difficult for a user to quantify a value or give specific meaning 
to an element. Designers can use blur to force generalized interpretations 
or in contrast to similar, more defined elements to suggest that one value is 
more certain than another. In visualizations, blur functions as a metaphor 
for uncertainty. Elements are literally fuzzy and challenge a user’s ability to 
quantify information. Too much blur could give a graphic an untrustworthy 
or indecisive feeling.

Designers can pair blur with an element, such as time, to show changes in 
the certainty of information over time. This suggests a reason or justification 
for the uncertainty and provides a narrative about the reliability of the data 
for the user.

See studies 3D and 4B.
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FAMILIAR CONTEXTS AND METAPHORS MAKE DATA RELATABLE.

Designers must consider how a user will relate to the data or information being 
conveyed. Providing a relatable context makes visualizations more useful and 
easier for a user to employ existing knowledge structures when interpreting 
visual elements. Allowing a user to tailor content to their particular situation, 
for example, by dictating a location for a weather-related map, is one method 
for making the context relatable to a user. A tailored visualization acts as a 
concrete and specific tool for the user, rather than just an abstract resource.

Furthermore, when designers use metaphors to relate complex information, 
these metaphors have to be familiar enough that a user can interpret them 
quickly without getting distracted. Dashboards and simple tool structures, like 
scales, work well, as users are already used to reading them for information.

See study sets 2 and 4.

USER CONTROL IN THE ANALYSIS PROCESS BRINGS THE USER  
CLOSER TO THE REPRESENTED PHENOMENON.

Allowing a user to control the stages or components of analysis brings the user 
closer to the initial phenomenon and makes changes in the data and moments 
of inference clearer. This strategy allows a designer to scaffold information, 
making it easier to understand and build off of initial insights with new 
information. For instance, designers can use sliders that tailor how much or 
how little information is seen, step-by-step walk-throughs of data analysis, or 
rollovers to give a user control over the analysis involved in a visualization.

See studies 2A and 2D.

VISUAL PART-TO-WHOLE COMPARISONS CONVEY ISSUES IN 
SCALE AND CAN MAKE MISSING ELEMENTS MORE OBVIOUS.

Designers can group elements together to show contrasting or missing elements. 
Such grouping allows a user to make generalized interpretations and develop 
part-to-whole comparisons, much in the way a percentage value works. 

Conveying completeness uncertainty depends on a user’s ability to perceive 
issues with the sample as compared to the overall population. Parts-to-whole 
comparisons can provide opportunities for a user to compare a population 
size to a sample size. When working with large populations, this comparison 
can push a user to question the representativeness of the sample. Designers 
can use parts-to-whole arrangements to call out missing parts or convey 
drastic differences in scale that are easier for a non-expert to understand 
than percentages.

See study set 3.
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The primary research question behind this study asked  “How can information 
visualizations commonly found in news media incorporate representations of 
uncertainty to facilitate non-expert decision making about current events?” 
After exploring the topic through extensive research, I found that experientially 
based visualizations can convey the uncertainty involved in complex information 
to non-expert users. Including this uncertainty through familiar contexts, 
metaphors, and structures gives users a fuller picture of information and 
empowers a user to make well-informed decisions. Beyond the initial research 
question, this research looked at a rich problem space that provides a number 
of opportunities for further design investigation.

INFORMATION VISUALIZATION AS A PROBLEM SPACE

Generally speaking, information visualization provides a rich problem space in 
which designers can make a meaningful impact through user centered thinking 
and creative explorations. This investigation focused on data journalism, but 
information visualizations occur in a variety of different contexts, providing 
myriad opportunities for designers to explore means of conveying uncertainty, 
as well as information in general, to a non-expert audience. Designers working 
with information visualizations have a unique opportunity to work in an 
inherently interdisciplinary problem space, as visualizations exist across 
a variety of different subject matters, including the source subject of the 
information, some form of statistical analysis, and the design of the display. 

In this investigation, I benefited from the input of several subject matter 
experts, including consultants from statistics and atmospheric sciences. These 
conversations focused on translating complex information into simplified 
graphics in a way that still accurately relayed the scientific information. While 
I had the benefit of speaking with experts one-on-one, graphical displays must 
relay information in a straightforward way with little discussion. I worked to 
translate these conversations into meaningful graphics that answered the 
questions a non-expert would have, just as I myself had questions in these 
conversations. Designers working with experts can provide a unique perspective 
on information, playing both the role of translator and often that of non-expert. 
Developing experientially sound visualizations requires collaboration between 
subject matter experts and designers, making it an inherently interdisciplinary 
problem space. 
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TESTING

Moving forward, this work could benefit from usability testing that examines 
interpretation of the principles I have outlined through my investigation. User 
testing could approach these principles from a credibility angle, e.g., how do 
design interventions like motion impact the credibility of an overall graphic. 
Testing could also examine a user’s confidence in the presented information, 
using a Likert scale or survey.

Testing these principles could also explore Berlo, Lemert, & Mertz’s 
work done on source credibility, specifically the multi-dimensional aspect 
of credibility (1969). Berlo et al. present credibility, or the trustworthiness 
of information and specifically the trustworthiness of an information source, 
as multi-dimensional, with several factors impacting a user’s impression of 
a source’s credibility, including safety, qualification, and dynamism (1969). 
These scales provide a unique opportunity to examine how different design 
interventions translate into dimensions of credibility and impact a user’s 
interpretation of uncertainty. These dimensions could be translated into a 
more tailored concept that examines dimensions of uncertainty, for example, 
the safety dimension of Berlo et al.’s scale includes honest/dishonest, which 
could be used in testing conveyances of uncertainty. 

Fully testing these principles would require breaking down visualizations 
into constituent parts, examining individual interventions. For example, in 
Study 4B (figure XX, pg. XXX) the individual gauges and motions could be 
broken separated and examined through individual survey or scale questions. 
Isolating individual interventions would allow for the testing of specific 
principles and their impact.

THE ISSUE OF UNCERTAINTY

Conveying uncertainty has become an especially relevant topic in visualization 
circles. The popularity and discussion surrounding The New York Times’ needle 
graphics shows how challenging and popular depictions of uncertainty can be, 
especially when a wide range of users can interpret their meaning experientially.

Future investigations on uncertainty can move into tangential issues, 
such as creative and information biases. Designers can use similar user-
centered design methods to explore how visualizations can convey biases 
in their creation or in information in general. Furthermore, designers can 
address issues like “false balance” presentations, meaning the tendency of 
journalism to present scientific issues as under debate when there is none 
(Dixon, McKeever, Holton, Clarke, & Eosco, 2015). Journalists often fail to place 
competing views in an appropriate context, for example, the two sides of the 
debate over a possible link between vaccines and autism are often given equal 
weight, despite overwhelming scientific evidence that no link exists between 
the two (Dixon et al., 2015). Research shows that presenting this information 
in a visual form that shows the weight-of-evidence on either side has a strong 
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impact on interpretation and personal beliefs (Dixon et al., 2015). A simple 
graphic showing the radical differences in support each side has can impact 
a user’s interpretation of the information.

As designers negotiate these methods, they must take pains to make 
users less likely to draw conclusions that disregard the science behind the 
visualizations. These methods encourage users to question the analysis and 
information behind a visualization. They must, however, walk a fine line 
between leading a user to question the information and driving a user disregard 
the information completely. The techniques have the potential drawback of 
making a user question the authority of a publication, an impact that designers 
must carefully consider when including uncertainty in visualizations.

FUTURE EXPLORATIONS IN VISUALIZING  
INFORMATION FOR NON-EXPERTS

The framework laid out in this investigation, especially the translated work 
of Patterson et al., provides a unique and useful structure for exploring 
information visualizations in a variety of contexts. Information visualizations 
provide a unique opportunity to convey complex information to non-expert 
users, but the creators of these visualizations must consider the accessibility 
of their visualization techniques. Designers can expand on the leverage points 
presented by Patterson et al. by exploring tools familiar to designers, such as 
developing narrative structures. Research shows that users retain and process 
information best when it is presented in a narrative format (Goodman et al., 
2017). Narrative is a familiar tool in the designer’s handbook, one that can 
be used to translate complex information into a format that non-experts 
can understand. Designers exploring information visualizations, as well as 
uncertainty, can build off of this research to explore how the overall narrative 
of a story can impact the accessibility of information and a visualization’s 
ability to convey uncertainty.

Designers can play an integral role in making information accessible in a 
variety of contexts. For example, scientific papers rely heavily on subject specific 
visualizations that act as a form of jargon, rendering most of the information 
they convey inaccessible to those outside the field of study. Current research 
looks at revolutionizing the structure of scientific papers and developing the 

“paper” of the future, which includes interactive information visualizations 
(Goodman et al., 2017). Designers can play a unique role in research like this, 
examining the structure and usability of these interactive visualizations, as 
well as their accessibility to non-experts.

CONCLUSIONS

The topics of uncertainty and information visualization both provide a great 
deal of design and design research opportunities. The emergent principles 
presented here provide methods for experientially conveying uncertainty 
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to non-experts. These principles can lead to techniques not realized in 
this investigation and suggest there are numerous opportunities for design 
exploration within this problem space. 

Furthermore, the current demand for information visualizations, especially 
those that appeal to a wide audience, makes research into the subject especially 
timely. Designers have a unique opportunity to bring design techniques like 
narrative and metaphor into new contexts, expanding the range of forms 
and methods for conveying information. Furthermore, both uncertainty 
and information visualization have the potential to segue into numerous 
subject areas beyond the scope of this investigation, such as public health 
and education. In a way, this problem space is representative of the future 
of design; it is an inherently interdisciplinary subject matter that requires 
designers to collaborate with researchers from a variety of fields.
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Figure 1: “The Needle” The New York Times’ needle interface for election 
results.

Figure 2: Twitter Responses Responses to The New York Times’ Election 
Needle on Twitter.

Figure 3: 2016 Visualization FiveThirtyEight’s visualizations of the 2016 
election relied on percentages to convey the uncertainty involved in the data.

Figure 4: Dual Coding Theory Information that uses both verbal and 
nonverbal channels provides greater opportunities to process information.

Figure 5: Uncertainty Types This investigation looks at inference, 
disagreement, completeness, and precision uncertainty, which come from 
the framework developed by Skeels et al. (2010).

Figure 6: Cascades of Inscriptions Latour’s theory describes the process of 
translating a physical phenomenon into abstract representations. 

Figure 7: Human Cognition Framework for Information Visualization 
Patterson et al.’s framework focuses on a user’s internal cognitive processes 
that engage with an information visualization.

Figure 8: Conceptual Framework The combined conceptual framework 
provides leverage points and reference points for the development of designed 
studies.

Figure 9: Methodology The methodology for this investigation includes case 
studies, parallel prototyping, and research through design.

Figure 10: Box Plot Box plots convey the distribution of a data set, but require 
some statistical knowledge to interpret quickly, making them inaccessible to 
non-experts.



120

Visualizing 
Uncertainty

Figure 11: Violin Plot While the shape does provide some intuitive elements, 
the rest of the plot encodes statistical information that requires prior knowledge 
on the part of the user.

Figure 12: Error Bars Error bars can mean several different things, making 
them difficult for a non-expert to interpret.

Figure 13: Confidence Interval Confidence intervals express uncertainty by 
giving a range of numbers within which a value might fall, but their abstracted 
structure is not intuitive or easy for non-experts to understand.

Figure 14: Cone of Uncertainty Uses an expanding cone to visualize the 
uncertainty in a projection.

Figure 15: The Needle The needle interface uses a gauge metaphor to convey 
the uncertainty in live election numbers, providing the user with an experiential 
visualization.

Figure 16: Economic Survey Graphic The Wall Street Journal’s conveys the 
uncertainty in their survey by contrasting gray bars with red lines.

Figure 17: Visualization by Matthew Norton Based on President Trump’s 
Approval Rating by Party (CNN). The visualization shows the margin of error 
for the data set through a growing animation, storyboarded here. 

See the animation at: https://college.design.ncsu.edu/thenfinally/hill/disapprove_
cc_titles.gif

Figure 18: Visualization by A. Anderson Based on Projections for the Virginia 
Governor’s Race (The New York Times). Anderson’s visualization shows the 
weighting given to different respondents in the final poll numbers.

Figures 19: Visualization by K. Frohbose Based on President Trump’s 
Popularity Poll (FiveThirtyEight). The visualization conveys disagreement 
uncertainty by highlighting areas of overlap between two different polls on 
the same topic.

Figure 20: Initial Studies These studies focused on one data set and iterating 
through different possibilities for visualizing uncertainty.

Figure 21: Blurred Bar Graph The visualization uses a color scale to show 
the number of projections at each value. The scales are blurred to increase 
the user’s feeling of uncertainty. The blur, however, is difficult to quantify.

Figure 22: Two Strategies The visualization on the left uses quartile ranges 
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to show the different projections, while the one on the right uses multiple 
bars, in ascending order, to show each projection.

Figure 23: Part-to-whole Visualization The blur in this visualization does 
not successful portray uncertainty, but if it was one frame of an animation, it 
could convey the different projections as parts-to-wholes.

Figure 24: Rising Water Initial Iteration The initial design incorporated a 
house in the scale as a means of further relating the graphic to storm surge 
and the damage that it causes, however, the metaphor is so closely related to 
the subject that it could be misunderstood.

Figure 25: Rising Water 1 The second version of this graphic uses a perspective 
view of Miami and has similar issues to the initial house iteration. See the 
animation at: https://college.design.ncsu.edu/thenfinally/hill/risingwater-1.gif

Figure 26: Rising Water 2 This iteration incorporates the Miami skyline 
with the rising water. It can also be seen as too literal or misinterpreted. See 
the animation at: https://college.design.ncsu.edu/thenfinally/hill/risingwater-2.gif

Figure 27: Initial Study This study was based off of an earlier iteration that 
used transparent layers to show different projections.

Figure 28: Expert Projections The motion in this initial study suggested 
growth or an ordered relationship between elements, rather than disagreement. 

See the animation at: https://college.design.ncsu.edu/thenfinally/hill/expertprojections-1.gif

Figure 29: Expert Projections 2 This second iteration eliminated the 
feeling of growth by highlighting projects, giving the visualization a feeling of 
disagreement and conflict. 

See the animation at: https://college.design.ncsu.edu/thenfinally/hill/expertprojections-2.gif

Figure 30: Bouncing Polls The graphic uses bouncing balls to represent the 
uncertainty involved in the relationship between a poll and the total population. 

See the animation at: https://college.design.ncsu.edu/thenfinally/hill/bouncing.gif

Figure 31: Constant Motion The graphic explores how constant motion can 
impact a user’s interpretations. It incorporates a glitch element as well as blur 
into a moving line graph. 

See the animation at: https://college.design.ncsu.edu/thenfinally/hill/motion.gif



122

Visualizing 
Uncertainty

Figure 32: Taking Control In this study, the user controlls the analysis process 
and changes the graphic. 

See the animation at: https://college.design.ncsu.edu/thenfinally/hill/takingcontrol.gif

Figure 33: Hurricane Heat Map This graphic combines a user’s endogenous 
attention and the chunking of elements. The user can customize the interface.

Figure 34: Comparing Polls This study uses animations and interactions to 
show a population in comparison to a sample.

Figure 35: Finding Agreement This visualization allows the user to set 
different thresholds for the data and explore the information through roll 
overs and zoom.

Figure 36: A Bite out of Unemployment This visualization walks the user 
through the inferences made in calculating the unemployment rate., specifically 
which demographics are included. 

See the animation at: https://college.design.ncsu.edu/thenfinally/hill/biteunemployment.gif

Figure 37: Hurricane Heat Map This study chunks information to show 
disagreement uncertainty in hurricane models.

Figure 38: Finding Agreement Conveying precision uncertainty by chunking.

Figure 39: Bouncing Polls This study chunks information to show sampling 
issues.

Figure 40: Comparing Polls This study allows a user to play with chunked 
elements to convey sampling issues.

Figure 41: Blurring Bars This study uses blur to contrast more solid elements 
and convey uncertainty through the differences.

Figure 42: Rising Water The wave motion in this study could be used to 
metaphorically convey inference uncertainty.

Figure 43: Bouncing Polls The bouncing motion from this study could be 
used to convey inference uncertainty.

Figure 44: Blurring Bars Blur can function as a metaphor for uncertainty and 
be used to convey inference uncertainty.
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Figure 45: Hurricane Dashboard The visualization uses a familiar dashboard 
structure and movement to convey disagreement uncertainty. 

See the animation at: https://college.design.ncsu.edu/thenfinally/hill/dashboard.gif

Figure 46: Adding to the Scale This visualization uses a scale to convey 
completeness uncertainty surrounding unemployment rates. See the animation 
at: https://college.design.ncsu.edu/thenfinally/hill/scale.gif

Figure 47: Taking the Temperature of the Electorate This visualization uses 
thermometers to convey issues of precision in election forecasts. 

See the animation at: https://college.design.ncsu.edu/thenfinally/hill/temperature.gif

TABLES

Table 1: Conceptual Matrix The conceptual framework translated into a 
matrix for visual explorations.

Table 2: Precedents Comparison The table analyzes the different precedents 
explored in this investigation.

Table 3: Studies Matrix
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DEFINITION OF TERMS

Cascades of Inscriptions: A series of representations of phenomena created 
by scientists and researchers (Roth and Tobin, 1977).

Case Studies: Investigations of single events or designed instances in context 
(Martin & Hanington, 2012).

Cognitive Load Theory: Some materials are difficult to understand and apply 
because they require a great deal of cognitive processing (Moreno & Park, 2010).

Completeness: uncertainty arising from concerns about sampling methods 
and generalizing to the population.

Computational Offloading: The extent to which representations reduce the 
amount of cognitive effort required to solve equivalent problems (Scaife & 
Rogers, 1996).

Cone of Uncertainty: Representation of the probable track of the center of 
a tropical storm. The width of the cone indicates the uncertainty involved in 
the prediction (Liu et al., 2015).

Confidence Intervals: An interval of numbers within which a particular 
statistic is believed to fall (Agresti & Finlay, 2009). 

Credibility: Uncertainty arising from an information source that produces 
data in conflict with other data, has produced unreliable data in the past, or 
is otherwise suspect for some reason.

Data Journalism: Storytelling through infographics and data analysis 
(Bradshaw, n.d.).

Data point: A piece of information (“data, n.,” 2017).

Data: Related items of (chiefly numerical) information considered collectively, 
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typically obtained by scientific work and used for reference, analysis, or 
calculation (“Data, N.”).

Disagreement: conflicts in data, whether from multiple measures, different 
data sets, or from multiple conclusions being drawn from the same data set.

Dual Coding Theory: Posits that the human brain has separate systems for 
interpreting verbal and nonverbal information (Paivio, 1991).

Endogenous Attention: Active attention (Patterson et al., 2014)

Exogenous Attention: The capturing of attention with triggering stimuli in 
the visual field (Patterson et al., 2014).

Graphical Constraining: The way graphical elements in a representation are 
able to constrain the kinds of inferences that can be made (Scaife & Rogers, 
1996).

Inferences: uncertainty arising from predictions and the meaning given to data.

Information visualization: A graphic that encodes information in order 
to function as a cognitive aid in the process of communicating information 
(Cairo, 2016, p. 5).

Information: The communication or reception of knowledge or intelligence 
(“Information, N.”).

Interactive: a visualization that responds to a user’s input (“Interactive, Adj.”).

Margin of Error: How much an estimated value could differ from the actual 
value (Agresti & Finlay, 2009).

Mean: The most commonly used measure of the center. The mean is the sum 
of the observations divided by the number of observations. Often called the 
average (Agresti & Finlay, 2009).

Median: The observation that falls in the middle of an ordered data set (Agresti 
& Finlay, 2009).

Minimum and Maximum Values: The highest and lowest values in a data set 
ordered by value (“Error Bars” The Data Visualization Catalogue).

News Media: Communication outlets that focus on delivering news to the 
general public (Science Daily).
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Non-expert: audiences that are unfamiliar with the graphical representations 
or statistical analysis that make up data visualizations (Grainger et al., 2016).

Outlier: An observation that falls well above or below the bulk of the data 
(Agresti & Finlay, 2009).

Parallel Prototyping: Simultaneous design explorations by multiple designers 
(Martin & Hanington, 2012).

Precision: any variation, imperfection or theoretical precision limitations 
in measurement techniques that produce quantitative data.

Predictive Data: projections extracted from patterns in data that are used to 
forecast trends or behaviors.

Prototyping: The creation of artifacts for developing and testing ideas (Martin 
& Hanington, 2012).

Quartiles: Four equal groups that divide the data based on a particular variable. 
(“Quartile, adj and n.”).

Re-representation: The different external representations of the same 
phenomenon, which can make problem-solving easier or more difficult, and 
which can present variable perspectives or information (Scaife & Rogers, 1996).

Research Through Design: Integrating theoretical and conceptual frameworks 
to ground design explorations and studies (Martin & Hanington, 2012).

Scenarios: Narratives that explore the future use of an artifact or system from 
a user’s perspective (Martin & Hanington, 2012).

Standard Deviation: Value that tells how spread out data points are from 
the mean. A higher standard deviation means that the data is more spread 
out (Agresti & Finlay, 2009).

Standard Error: The standard deviation of a particular statistic across several 
samples (Agresti & Finlay, 2009). It provides a way to know how close a 
particular statistic from a particular sample is to the actual value for a whole 
group.

Task Analysis: A break down of a user’s interactions with a system (Martin 
& Hanington, 2012).

Time: The interval separating successive events or actions, or the period during 
which an action, condition, or state continues (“Time, n., Int., and Conj.”).
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Uncertainty: Incomplete or imperfect knowledge arising from a variety 
of factors including: measurement precision, completeness, inferences, 
disagreement, and credibility (Skeels et al., 2010).

Visualization Literacy: The ability to make meaning from and interpret 
patterns, trends, and correlations in visual representations of data. (Börner 
et al., 2016).



135

Appendix

TASK ANALYSES

Alan is looking for news 
articles to explain the 
impending hurricane

Alan finds an article 
with a moving graphic 
on storm surge 

Alan sees that the 
projection presented 
isn’t very precise

Alan focuses on the 
scale of outcomes and 
how it could impact him

Alan considers whether 
he should evacuate or 
stocking up on food

The graphic stands out 
from the prose text

Realizes that conditions 
will be dangerous at all 
ends of the prediction

Wonders how the scale 
compares to historical 
storms?

Alan realizes that 
predictions this far 
ahead are imprecise

Scale relates numbers to 
actual impact

Uses bright colors and 
motion to capture  
exogenous attention

Casey watches the 
graphic for a while, 
trying to interpret it.

Pattern Recognition
Response

Casey is looking for 
information about the 
job market 

She comes across the 
graphic in a business 
oriented newspaper

Casey relies on the 
caption and title to 
interpret the graphic

Casey still isn’t sure 
what this information 
means for her

Casey relates the 
motions with conflict 
and disagreement

How does this 
percentage relate to her 
job search?

Graphic doesn’t have 
options for Casey to 
take control

Uses bright colors and 
motion to capture  
exogenous attention

Needs more context to 
understand the meaning 
of the numbers. 

The graphic stands out 
from the prose text

Study 1A Task Analysis

Study 1B Task Analysis
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Study 1C Task Analysis

Study 1D Task Analysis
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Study 2A Task Analysis

Study 2B Task Analysis
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Study 2C Task Analysis

Study 2D Task Analysis
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Study 3A Task Analysis

Study 3D Task Analysis
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Study 4B Task Analysis

Study 4C Task Analysis
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Study 4D Task Analysis
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